use of org.nd4j.linalg.api.ops.impl.transforms.IsMax in project deeplearning4j by deeplearning4j.
the class MaskedReductionUtil method maskedPoolingEpsilonCnn.
public static INDArray maskedPoolingEpsilonCnn(PoolingType poolingType, INDArray input, INDArray mask, INDArray epsilon2d, boolean alongHeight, int pnorm) {
// [minibatch, depth, h=1, w=X] or [minibatch, depth, h=X, w=1] data
// with a mask array of shape [minibatch, X]
//If masking along height: broadcast dimensions are [0,2]
//If masking along width: broadcast dimensions are [0,3]
int[] dimensions = (alongHeight ? CNN_DIM_MASK_H : CNN_DIM_MASK_W);
switch(poolingType) {
case MAX:
//TODO This is ugly - replace it with something better... Need something like a Broadcast CAS op
INDArray negInfMask = Transforms.not(mask);
BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0));
INDArray withInf = Nd4j.createUninitialized(input.shape());
Nd4j.getExecutioner().exec(new BroadcastAddOp(input, negInfMask, withInf, dimensions));
//At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op
INDArray isMax = Nd4j.getExecutioner().execAndReturn(new IsMax(withInf, 2, 3));
return Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(isMax, epsilon2d, isMax, 0, 1));
case AVG:
case SUM:
//if out = sum(in,dims) then dL/dIn = dL/dOut -> duplicate to each step and mask
//if out = avg(in,dims) then dL/dIn = 1/N * dL/dOut
//With masking: N differs for different time series
INDArray out = Nd4j.createUninitialized(input.shape(), 'f');
//Broadcast copy op, then divide and mask to 0 as appropriate
Nd4j.getExecutioner().exec(new BroadcastCopyOp(out, epsilon2d, out, 0, 1));
Nd4j.getExecutioner().exec(new BroadcastMulOp(out, mask, out, dimensions));
if (poolingType == PoolingType.SUM) {
return out;
}
//Note that with CNNs, current design is restricted to [minibatch, depth, 1, W] ot [minibatch, depth, H, 1]
//[minibatchSize,tsLength] -> [minibatchSize,1]
INDArray nEachTimeSeries = mask.sum(1);
Nd4j.getExecutioner().exec(new BroadcastDivOp(out, nEachTimeSeries, out, 0));
return out;
case PNORM:
//Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0
INDArray masked2 = Nd4j.createUninitialized(input.shape());
Nd4j.getExecutioner().exec(new BroadcastMulOp(input, mask, masked2, dimensions));
INDArray abs = Transforms.abs(masked2, true);
Transforms.pow(abs, pnorm, false);
INDArray pNorm = Transforms.pow(abs.sum(2, 3), 1.0 / pnorm);
INDArray numerator;
if (pnorm == 2) {
numerator = input.dup();
} else {
INDArray absp2 = Transforms.pow(Transforms.abs(input, true), pnorm - 2, false);
numerator = input.mul(absp2);
}
INDArray denom = Transforms.pow(pNorm, pnorm - 1, false);
denom.rdivi(epsilon2d);
Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(numerator, denom, numerator, 0, 1));
//Apply mask
Nd4j.getExecutioner().exec(new BroadcastMulOp(numerator, mask, numerator, dimensions));
return numerator;
case NONE:
throw new UnsupportedOperationException("NONE pooling type not supported");
default:
throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType);
}
}
use of org.nd4j.linalg.api.ops.impl.transforms.IsMax in project deeplearning4j by deeplearning4j.
the class GlobalPoolingLayer method epsilonHelperFullArray.
private INDArray epsilonHelperFullArray(INDArray inputArray, INDArray epsilon, int[] poolDim) {
//Broadcast: occurs on the remaining dimensions, after the pool dimensions have been removed.
//TODO find a more efficient way to do this
int[] broadcastDims = new int[inputArray.rank() - poolDim.length];
int count = 0;
for (int i = 0; i < inputArray.rank(); i++) {
if (ArrayUtils.contains(poolDim, i))
continue;
broadcastDims[count++] = i;
}
switch(poolingType) {
case MAX:
INDArray isMax = Nd4j.getExecutioner().execAndReturn(new IsMax(inputArray.dup(), poolDim));
return Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(isMax, epsilon, isMax, broadcastDims));
case AVG:
//if out = avg(in,dims) then dL/dIn = 1/N * dL/dOut
int n = 1;
for (int d : poolDim) {
n *= inputArray.size(d);
}
INDArray ret = Nd4j.create(inputArray.shape());
Nd4j.getExecutioner().exec(new BroadcastCopyOp(ret, epsilon, ret, broadcastDims));
ret.divi(n);
return ret;
case SUM:
INDArray retSum = Nd4j.create(inputArray.shape());
Nd4j.getExecutioner().exec(new BroadcastCopyOp(retSum, epsilon, retSum, broadcastDims));
return retSum;
case PNORM:
int pnorm = layerConf().getPnorm();
//First: do forward pass to get pNorm array
INDArray abs = Transforms.abs(inputArray, true);
Transforms.pow(abs, pnorm, false);
INDArray pNorm = Transforms.pow(abs.sum(poolDim), 1.0 / pnorm);
//dL/dIn = dL/dOut * dOut/dIn
//dOut/dIn = in .* |in|^(p-2) / ||in||_p^(p-1), where ||in||_p is the output p-norm
INDArray numerator;
if (pnorm == 2) {
numerator = inputArray.dup();
} else {
INDArray absp2 = Transforms.pow(Transforms.abs(inputArray, true), pnorm - 2, false);
numerator = inputArray.mul(absp2);
}
INDArray denom = Transforms.pow(pNorm, pnorm - 1, false);
denom.rdivi(epsilon);
Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(numerator, denom, numerator, broadcastDims));
return numerator;
default:
throw new RuntimeException("Unknown or not supported pooling type: " + poolingType);
}
}
use of org.nd4j.linalg.api.ops.impl.transforms.IsMax in project deeplearning4j by deeplearning4j.
the class SubsamplingLayer method backpropGradient.
@Override
public Pair<Gradient, INDArray> backpropGradient(INDArray epsilon) {
int miniBatch = input.size(0);
int inDepth = input.size(1);
int inH = input.size(2);
int inW = input.size(3);
int[] kernel = layerConf().getKernelSize();
int[] strides = layerConf().getStride();
int[] pad;
int[] outSize;
if (convolutionMode == ConvolutionMode.Same) {
//Also performs validation
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode);
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] { inH, inW }, kernel, strides);
} else {
pad = layerConf().getPadding();
//Also performs validation
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode);
}
int outH = outSize[0];
int outW = outSize[1];
if (helper != null && Nd4j.dataType() != DataBuffer.Type.HALF) {
Pair<Gradient, INDArray> ret = helper.backpropGradient(input, epsilon, kernel, strides, pad, layerConf().getPoolingType(), convolutionMode);
if (ret != null) {
return ret;
}
}
//subsampling doesn't have weights and thus gradients are not calculated for this layer
//only scale and reshape epsilon
int inputHeight = input().size(-2);
int inputWidth = input().size(-1);
Gradient retGradient = new DefaultGradient();
//Epsilons in shape: [miniBatch, depth, outH, outW]
//Epsilons out shape: [miniBatch, depth, inH, inW]
//Two possibilities here for the epsilons:
//(a) Epsilons come from a dense/output layer above, with c order and strides [depth*H*W, H*W, W, 1]
//(b) Epsilons come from CNN layer above, with c order and strides [H*W, depth*H*W, W, 1] (i.e., due to permute)
//We want to reshape epsilons to 1d here, but to do this without a copy: we end up with different orders of
// element in the buffer, for the "dense above" and "cnn above" cases.
//Fortunately, we can just permute things when we do the im2col reshaping; then, the order of the rows in
// col2d will match the order of the 1d epsilons...
//With the 1d epsilons order matching the rows order for the 2d im2col: we can just do a muliColumnVector op,
// instead of a slower broadcast muli op
boolean cOrderStrides = false;
if (epsilon.ordering() != 'c') {
epsilon = epsilon.dup('c');
cOrderStrides = true;
}
if (!cOrderStrides && Shape.strideDescendingCAscendingF(epsilon)) {
cOrderStrides = true;
} else if (!Arrays.equals(new int[] { outH * outW, inDepth * outH * outW, outW, 1 }, epsilon.stride())) {
//Unexpected/unusual strides, not either (a) or (b) cases above
epsilon = epsilon.dup('c');
cOrderStrides = true;
}
INDArray col6d;
INDArray col6dPermuted;
INDArray epsilon1d;
if (cOrderStrides) {
//"Dense/Output layer above strides... i.e., standard c-order strides
col6d = Nd4j.create(new int[] { miniBatch, inDepth, outH, outW, kernel[0], kernel[1] }, 'c');
col6dPermuted = col6d.permute(0, 1, 4, 5, 2, 3);
//zero copy reshape
epsilon1d = epsilon.reshape('c', ArrayUtil.prod(epsilon.length()), 1);
} else {
//"CNN layer above" strides...
col6d = Nd4j.create(new int[] { inDepth, miniBatch, outH, outW, kernel[0], kernel[1] }, 'c');
col6dPermuted = col6d.permute(1, 0, 4, 5, 2, 3);
INDArray epsilonTemp = epsilon.permute(1, 0, 2, 3);
//Should be a zero-copy reshape always
epsilon1d = epsilonTemp.reshape('c', new int[] { ArrayUtil.prod(epsilon.length()), 1 });
}
INDArray col2d = col6d.reshape('c', miniBatch * inDepth * outH * outW, kernel[0] * kernel[1]);
switch(layerConf().getPoolingType()) {
case MAX:
//Execute im2col, then reshape to 2d. Note rows are in a different order for cOrderStrides true vs false cases
Convolution.im2col(input, kernel[0], kernel[1], strides[0], strides[1], pad[0], pad[1], convolutionMode == ConvolutionMode.Same, col6dPermuted);
INDArray isMax = Nd4j.getExecutioner().execAndReturn(new IsMax(col2d, 1));
isMax.muliColumnVector(epsilon1d);
break;
case AVG:
//TODO: We could further optimize this by creating an uninitialized array, and doing a 'putiColumnVector' operation
// instead of a zero initialization + an addiColumnVector op
col2d.addiColumnVector(epsilon1d);
break;
case PNORM:
int pnorm = layerConf().getPnorm();
//First: do forward pass to get pNorm array
Convolution.im2col(input, kernel[0], kernel[1], strides[0], strides[1], pad[0], pad[1], convolutionMode == ConvolutionMode.Same, col6dPermuted);
//dup as we need col2d again later
INDArray pNorm = Transforms.abs(col2d, true);
Transforms.pow(pNorm, pnorm, false);
pNorm = pNorm.sum(1);
Transforms.pow(pNorm, (1.0 / pnorm), false);
//dL/dIn = dL/dOut * dOut/dIn
//dOut/dIn = in .* |in|^(p-2) / ||in||_p^(p-1), where ||in||_p is the output p-norm
INDArray numerator;
if (pnorm == 2) {
numerator = col2d;
} else {
INDArray absp2 = Transforms.pow(Transforms.abs(col2d, true), pnorm - 2, false);
numerator = col2d.muli(absp2);
}
INDArray denom = Transforms.pow(pNorm, pnorm - 1, false);
double eps = layerConf().getEps();
// in case of 0
Transforms.max(denom, eps, false);
numerator.muliColumnVector(denom.rdivi(epsilon1d));
break;
case NONE:
return new Pair<>(retGradient, epsilon);
default:
throw new IllegalStateException("Unknown or unsupported pooling type: " + layerConf().getPoolingType());
}
//Finally: we want the output strides for the epsilons to match the strides in the activations from the layer below
//Assuming the layer below is a CNN layer (very likely) we want [H*W, depth*H*W, W, 1] instead of the standard
// c-order [depth*H*W, H*W, W, 1] strides
//To achieve this: [depth, miniBatch, H, W] in c order, then permute to [miniBatch, depth, H, W]
//This gives us proper strides of 1 on the muli...
INDArray tempEpsilon = Nd4j.create(new int[] { inDepth, miniBatch, inH, inW }, 'c');
INDArray outEpsilon = tempEpsilon.permute(1, 0, 2, 3);
Convolution.col2im(col6dPermuted, outEpsilon, strides[0], strides[1], pad[0], pad[1], inputHeight, inputWidth);
if (layerConf().getPoolingType() == PoolingType.AVG)
outEpsilon.divi(ArrayUtil.prod(layerConf().getKernelSize()));
return new Pair<>(retGradient, outEpsilon);
}
use of org.nd4j.linalg.api.ops.impl.transforms.IsMax in project deeplearning4j by deeplearning4j.
the class MaskedReductionUtil method maskedPoolingEpsilonTimeSeries.
public static INDArray maskedPoolingEpsilonTimeSeries(PoolingType poolingType, INDArray input, INDArray mask, INDArray epsilon2d, int pnorm) {
if (input.rank() != 3) {
throw new IllegalArgumentException("Expect rank 3 input activation array: got " + input.rank());
}
if (mask.rank() != 2) {
throw new IllegalArgumentException("Expect rank 2 array for mask: got " + mask.rank());
}
if (epsilon2d.rank() != 2) {
throw new IllegalArgumentException("Expected rank 2 array for errors: got " + epsilon2d.rank());
}
switch(poolingType) {
case MAX:
//TODO This is ugly - replace it with something better... Need something like a Broadcast CAS op
INDArray negInfMask = Transforms.not(mask);
BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0));
INDArray withInf = Nd4j.createUninitialized(input.shape());
Nd4j.getExecutioner().exec(new BroadcastAddOp(input, negInfMask, withInf, 0, 2));
//At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op
INDArray isMax = Nd4j.getExecutioner().execAndReturn(new IsMax(withInf, 2));
return Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(isMax, epsilon2d, isMax, 0, 1));
case AVG:
case SUM:
//if out = sum(in,dims) then dL/dIn = dL/dOut -> duplicate to each step and mask
//if out = avg(in,dims) then dL/dIn = 1/N * dL/dOut
//With masking: N differs for different time series
INDArray out = Nd4j.createUninitialized(input.shape(), 'f');
//Broadcast copy op, then divide and mask to 0 as appropriate
Nd4j.getExecutioner().exec(new BroadcastCopyOp(out, epsilon2d, out, 0, 1));
Nd4j.getExecutioner().exec(new BroadcastMulOp(out, mask, out, 0, 2));
if (poolingType == PoolingType.SUM) {
return out;
}
//[minibatchSize,tsLength] -> [minibatchSize,1]
INDArray nEachTimeSeries = mask.sum(1);
Nd4j.getExecutioner().exec(new BroadcastDivOp(out, nEachTimeSeries, out, 0));
return out;
case PNORM:
//Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0
INDArray masked2 = Nd4j.createUninitialized(input.shape());
Nd4j.getExecutioner().exec(new BroadcastMulOp(input, mask, masked2, 0, 2));
INDArray abs = Transforms.abs(masked2, true);
Transforms.pow(abs, pnorm, false);
INDArray pNorm = Transforms.pow(abs.sum(2), 1.0 / pnorm);
INDArray numerator;
if (pnorm == 2) {
numerator = input.dup();
} else {
INDArray absp2 = Transforms.pow(Transforms.abs(input, true), pnorm - 2, false);
numerator = input.mul(absp2);
}
INDArray denom = Transforms.pow(pNorm, pnorm - 1, false);
denom.rdivi(epsilon2d);
Nd4j.getExecutioner().execAndReturn(new BroadcastMulOp(numerator, denom, numerator, 0, 1));
//Apply mask
Nd4j.getExecutioner().exec(new BroadcastMulOp(numerator, mask, numerator, 0, 2));
return numerator;
case NONE:
throw new UnsupportedOperationException("NONE pooling type not supported");
default:
throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType);
}
}
Aggregations