use of boofcv.struct.image.Planar in project BoofCV by lessthanoptimal.
the class ExampleImageStitching method renderStitching.
/**
* Renders and displays the stitched together images
*/
public static void renderStitching(BufferedImage imageA, BufferedImage imageB, Homography2D_F64 fromAtoB) {
// specify size of output image
double scale = 0.5;
// Convert into a BoofCV color format
Planar<GrayF32> colorA = ConvertBufferedImage.convertFromPlanar(imageA, null, true, GrayF32.class);
Planar<GrayF32> colorB = ConvertBufferedImage.convertFromPlanar(imageB, null, true, GrayF32.class);
// Where the output images are rendered into
Planar<GrayF32> work = colorA.createSameShape();
// Adjust the transform so that the whole image can appear inside of it
Homography2D_F64 fromAToWork = new Homography2D_F64(scale, 0, colorA.width / 4, 0, scale, colorA.height / 4, 0, 0, 1);
Homography2D_F64 fromWorkToA = fromAToWork.invert(null);
// Used to render the results onto an image
PixelTransformHomography_F32 model = new PixelTransformHomography_F32();
InterpolatePixelS<GrayF32> interp = FactoryInterpolation.bilinearPixelS(GrayF32.class, BorderType.ZERO);
ImageDistort<Planar<GrayF32>, Planar<GrayF32>> distort = DistortSupport.createDistortPL(GrayF32.class, model, interp, false);
distort.setRenderAll(false);
// Render first image
model.set(fromWorkToA);
distort.apply(colorA, work);
// Render second image
Homography2D_F64 fromWorkToB = fromWorkToA.concat(fromAtoB, null);
model.set(fromWorkToB);
distort.apply(colorB, work);
// Convert the rendered image into a BufferedImage
BufferedImage output = new BufferedImage(work.width, work.height, imageA.getType());
ConvertBufferedImage.convertTo(work, output, true);
Graphics2D g2 = output.createGraphics();
// draw lines around the distorted image to make it easier to see
Homography2D_F64 fromBtoWork = fromWorkToB.invert(null);
Point2D_I32[] corners = new Point2D_I32[4];
corners[0] = renderPoint(0, 0, fromBtoWork);
corners[1] = renderPoint(colorB.width, 0, fromBtoWork);
corners[2] = renderPoint(colorB.width, colorB.height, fromBtoWork);
corners[3] = renderPoint(0, colorB.height, fromBtoWork);
g2.setColor(Color.ORANGE);
g2.setStroke(new BasicStroke(4));
g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
g2.drawLine(corners[0].x, corners[0].y, corners[1].x, corners[1].y);
g2.drawLine(corners[1].x, corners[1].y, corners[2].x, corners[2].y);
g2.drawLine(corners[2].x, corners[2].y, corners[3].x, corners[3].y);
g2.drawLine(corners[3].x, corners[3].y, corners[0].x, corners[0].y);
ShowImages.showWindow(output, "Stitched Images", true);
}
use of boofcv.struct.image.Planar in project BoofCV by lessthanoptimal.
the class ExampleOverheadView method main.
public static void main(String[] args) {
BufferedImage input = UtilImageIO.loadImage(UtilIO.pathExample("road/left01.png"));
Planar<GrayU8> imageRGB = ConvertBufferedImage.convertFromPlanar(input, null, true, GrayU8.class);
StereoParameters stereoParam = CalibrationIO.load(UtilIO.pathExample("road/stereo01.yaml"));
Se3_F64 groundToLeft = CalibrationIO.load(UtilIO.pathExample("road/ground_to_left_01.yaml"));
CreateSyntheticOverheadView<Planar<GrayU8>> generateOverhead = new CreateSyntheticOverheadViewPL<>(InterpolationType.BILINEAR, 3, GrayU8.class);
// size of cells in the overhead image in world units
double cellSize = 0.05;
// You can use this to automatically select reasonable values for the overhead image
SelectOverheadParameters selectMapSize = new SelectOverheadParameters(cellSize, 20, 0.5);
selectMapSize.process(stereoParam.left, groundToLeft);
int overheadWidth = selectMapSize.getOverheadWidth();
int overheadHeight = selectMapSize.getOverheadHeight();
Planar<GrayU8> overheadRGB = new Planar<>(GrayU8.class, overheadWidth, overheadHeight, 3);
generateOverhead.configure(stereoParam.left, groundToLeft, selectMapSize.getCenterX(), selectMapSize.getCenterY(), cellSize, overheadRGB.width, overheadRGB.height);
generateOverhead.process(imageRGB, overheadRGB);
// note that the left/right values are swapped in the overhead image. This is an artifact of the plane's
// 2D coordinate system having +y pointing up, while images have +y pointing down.
BufferedImage output = ConvertBufferedImage.convertTo(overheadRGB, null, true);
ShowImages.showWindow(input, "Input Image", true);
ShowImages.showWindow(output, "Overhead Image", true);
}
use of boofcv.struct.image.Planar in project BoofCV by lessthanoptimal.
the class ExampleVideoMosaic method main.
public static void main(String[] args) {
// Configure the feature detector
ConfigGeneralDetector confDetector = new ConfigGeneralDetector();
confDetector.threshold = 1;
confDetector.maxFeatures = 300;
confDetector.radius = 3;
// Use a KLT tracker
PointTracker<GrayF32> tracker = FactoryPointTracker.klt(new int[] { 1, 2, 4, 8 }, confDetector, 3, GrayF32.class, GrayF32.class);
// This estimates the 2D image motion
// An Affine2D_F64 model also works quite well.
ImageMotion2D<GrayF32, Homography2D_F64> motion2D = FactoryMotion2D.createMotion2D(220, 3, 2, 30, 0.6, 0.5, false, tracker, new Homography2D_F64());
// wrap it so it output color images while estimating motion from gray
ImageMotion2D<Planar<GrayF32>, Homography2D_F64> motion2DColor = new PlToGrayMotion2D<>(motion2D, GrayF32.class);
// This fuses the images together
StitchingFromMotion2D<Planar<GrayF32>, Homography2D_F64> stitch = FactoryMotion2D.createVideoStitch(0.5, motion2DColor, ImageType.pl(3, GrayF32.class));
// Load an image sequence
MediaManager media = DefaultMediaManager.INSTANCE;
String fileName = UtilIO.pathExample("mosaic/airplane01.mjpeg");
SimpleImageSequence<Planar<GrayF32>> video = media.openVideo(fileName, ImageType.pl(3, GrayF32.class));
Planar<GrayF32> frame = video.next();
// shrink the input image and center it
Homography2D_F64 shrink = new Homography2D_F64(0.5, 0, frame.width / 4, 0, 0.5, frame.height / 4, 0, 0, 1);
shrink = shrink.invert(null);
// The mosaic will be larger in terms of pixels but the image will be scaled down.
// To change this into stabilization just make it the same size as the input with no shrink.
stitch.configure(frame.width, frame.height, shrink);
// process the first frame
stitch.process(frame);
// Create the GUI for displaying the results + input image
ImageGridPanel gui = new ImageGridPanel(1, 2);
gui.setImage(0, 0, new BufferedImage(frame.width, frame.height, BufferedImage.TYPE_INT_RGB));
gui.setImage(0, 1, new BufferedImage(frame.width, frame.height, BufferedImage.TYPE_INT_RGB));
gui.setPreferredSize(new Dimension(3 * frame.width, frame.height * 2));
ShowImages.showWindow(gui, "Example Mosaic", true);
boolean enlarged = false;
// process the video sequence one frame at a time
while (video.hasNext()) {
frame = video.next();
if (!stitch.process(frame))
throw new RuntimeException("You should handle failures");
// if the current image is close to the image border recenter the mosaic
StitchingFromMotion2D.Corners corners = stitch.getImageCorners(frame.width, frame.height, null);
if (nearBorder(corners.p0, stitch) || nearBorder(corners.p1, stitch) || nearBorder(corners.p2, stitch) || nearBorder(corners.p3, stitch)) {
stitch.setOriginToCurrent();
// only enlarge the image once
if (!enlarged) {
enlarged = true;
// double the image size and shift it over to keep it centered
int widthOld = stitch.getStitchedImage().width;
int heightOld = stitch.getStitchedImage().height;
int widthNew = widthOld * 2;
int heightNew = heightOld * 2;
int tranX = (widthNew - widthOld) / 2;
int tranY = (heightNew - heightOld) / 2;
Homography2D_F64 newToOldStitch = new Homography2D_F64(1, 0, -tranX, 0, 1, -tranY, 0, 0, 1);
stitch.resizeStitchImage(widthNew, heightNew, newToOldStitch);
gui.setImage(0, 1, new BufferedImage(widthNew, heightNew, BufferedImage.TYPE_INT_RGB));
}
corners = stitch.getImageCorners(frame.width, frame.height, null);
}
// display the mosaic
ConvertBufferedImage.convertTo(frame, gui.getImage(0, 0), true);
ConvertBufferedImage.convertTo(stitch.getStitchedImage(), gui.getImage(0, 1), true);
// draw a red quadrilateral around the current frame in the mosaic
Graphics2D g2 = gui.getImage(0, 1).createGraphics();
g2.setColor(Color.RED);
g2.drawLine((int) corners.p0.x, (int) corners.p0.y, (int) corners.p1.x, (int) corners.p1.y);
g2.drawLine((int) corners.p1.x, (int) corners.p1.y, (int) corners.p2.x, (int) corners.p2.y);
g2.drawLine((int) corners.p2.x, (int) corners.p2.y, (int) corners.p3.x, (int) corners.p3.y);
g2.drawLine((int) corners.p3.x, (int) corners.p3.y, (int) corners.p0.x, (int) corners.p0.y);
gui.repaint();
// throttle the speed just in case it's on a fast computer
BoofMiscOps.pause(50);
}
}
use of boofcv.struct.image.Planar in project BoofCV by lessthanoptimal.
the class ExampleVideoStabilization method main.
public static void main(String[] args) {
// Configure the feature detector
ConfigGeneralDetector confDetector = new ConfigGeneralDetector();
confDetector.threshold = 10;
confDetector.maxFeatures = 300;
confDetector.radius = 2;
// Use a KLT tracker
PointTracker<GrayF32> tracker = FactoryPointTracker.klt(new int[] { 1, 2, 4, 8 }, confDetector, 3, GrayF32.class, GrayF32.class);
// This estimates the 2D image motion
// An Affine2D_F64 model also works quite well.
ImageMotion2D<GrayF32, Homography2D_F64> motion2D = FactoryMotion2D.createMotion2D(200, 3, 2, 30, 0.6, 0.5, false, tracker, new Homography2D_F64());
// wrap it so it output color images while estimating motion from gray
ImageMotion2D<Planar<GrayF32>, Homography2D_F64> motion2DColor = new PlToGrayMotion2D<>(motion2D, GrayF32.class);
// This fuses the images together
StitchingFromMotion2D<Planar<GrayF32>, Homography2D_F64> stabilize = FactoryMotion2D.createVideoStitch(0.5, motion2DColor, ImageType.pl(3, GrayF32.class));
// Load an image sequence
MediaManager media = DefaultMediaManager.INSTANCE;
String fileName = UtilIO.pathExample("shake.mjpeg");
SimpleImageSequence<Planar<GrayF32>> video = media.openVideo(fileName, ImageType.pl(3, GrayF32.class));
Planar<GrayF32> frame = video.next();
// The output image size is the same as the input image size
stabilize.configure(frame.width, frame.height, null);
// process the first frame
stabilize.process(frame);
// Create the GUI for displaying the results + input image
ImageGridPanel gui = new ImageGridPanel(1, 2);
gui.setImage(0, 0, new BufferedImage(frame.width, frame.height, BufferedImage.TYPE_INT_RGB));
gui.setImage(0, 1, new BufferedImage(frame.width, frame.height, BufferedImage.TYPE_INT_RGB));
gui.autoSetPreferredSize();
ShowImages.showWindow(gui, "Example Stabilization", true);
// process the video sequence one frame at a time
while (video.hasNext()) {
if (!stabilize.process(video.next()))
throw new RuntimeException("Don't forget to handle failures!");
// display the stabilized image
ConvertBufferedImage.convertTo(frame, gui.getImage(0, 0), true);
ConvertBufferedImage.convertTo(stabilize.getStitchedImage(), gui.getImage(0, 1), true);
gui.repaint();
// throttle the speed just in case it's on a fast computer
BoofMiscOps.pause(50);
}
}
use of boofcv.struct.image.Planar in project BoofCV by lessthanoptimal.
the class ExampleFisheyeToEquirectangular method main.
public static void main(String[] args) {
// Path to image data and calibration data
String fisheyePath = UtilIO.pathExample("fisheye/theta");
// load the fisheye camera parameters
CameraUniversalOmni model0 = CalibrationIO.load(new File(fisheyePath, "front.yaml"));
CameraUniversalOmni model1 = CalibrationIO.load(new File(fisheyePath, "back.yaml"));
LensDistortionWideFOV distort0 = new LensDistortionUniversalOmni(model0);
LensDistortionWideFOV distort1 = new LensDistortionUniversalOmni(model1);
ImageType<Planar<GrayF32>> imageType = ImageType.pl(3, GrayF32.class);
InterpolatePixel<Planar<GrayF32>> interp = FactoryInterpolation.createPixel(0, 255, InterpolationType.BILINEAR, BorderType.ZERO, imageType);
ImageDistort<Planar<GrayF32>, Planar<GrayF32>> distort = FactoryDistort.distort(false, interp, imageType);
// This will create an equirectangular image with 800 x 400 pixels
MultiCameraToEquirectangular<Planar<GrayF32>> alg = new MultiCameraToEquirectangular<>(distort, 800, 400, imageType);
// this is an important parameter and is used to filter out falsely mirrored pixels
alg.setMaskToleranceAngle(UtilAngle.radian(0.1f));
// camera has a known FOV of 185 degrees
GrayU8 mask0 = createMask(model0, distort0, UtilAngle.radian(182));
// the edges are likely to be noisy,
GrayU8 mask1 = createMask(model1, distort1, UtilAngle.radian(182));
// so crop it a bit..
// Rotate camera axis so that +x is forward and not +z and make it visually pleasing
FMatrixRMaj adjR = ConvertRotation3D_F32.eulerToMatrix(EulerType.XYZ, GrlConstants.F_PI / 2, 0, 0, null);
// Rotation from the front camera to the back facing camera.
// This is only an approximation. Should be determined through calibration.
FMatrixRMaj f2b = ConvertRotation3D_F32.eulerToMatrix(EulerType.ZYX, GrlConstants.F_PI, 0, 0, null);
Se3_F32 frontToFront = new Se3_F32();
frontToFront.setRotation(adjR);
Se3_F32 frontToBack = new Se3_F32();
CommonOps_FDRM.mult(f2b, adjR, frontToBack.R);
// add the camera and specify which pixels are valid. These functions precompute the entire transform
// and can be relatively slow, but generating the equirectangular image should be much faster
alg.addCamera(frontToBack, distort0, mask0);
alg.addCamera(frontToFront, distort1, mask1);
// Load fisheye RGB image
BufferedImage buffered0 = UtilImageIO.loadImage(fisheyePath, "front_table.jpg");
Planar<GrayF32> fisheye0 = ConvertBufferedImage.convertFrom(buffered0, true, ImageType.pl(3, GrayF32.class));
BufferedImage buffered1 = UtilImageIO.loadImage(fisheyePath, "back_table.jpg");
Planar<GrayF32> fisheye1 = ConvertBufferedImage.convertFrom(buffered1, true, ImageType.pl(3, GrayF32.class));
List<Planar<GrayF32>> images = new ArrayList<>();
images.add(fisheye0);
images.add(fisheye1);
alg.render(images);
BufferedImage equiOut = ConvertBufferedImage.convertTo(alg.getRenderedImage(), null, true);
ShowImages.showWindow(equiOut, "Dual Fisheye to Equirectangular", true);
}
Aggregations