use of cbit.vcell.constraints.SimpleBounds in project vcell by virtualcell.
the class ApplicationConstraintsGenerator method fromApplication.
/**
* Insert the method's description here.
* Creation date: (6/26/01 8:25:55 AM)
* @return cbit.vcell.constraints.ConstraintContainerImpl
*/
public static ConstraintContainerImpl fromApplication(SimulationContext simContext) {
try {
ConstraintContainerImpl ccImpl = new ConstraintContainerImpl();
// ====================
// add physical limits
// ====================
//
// no negative concentrations
//
cbit.vcell.model.Model model = simContext.getModel();
cbit.vcell.model.SpeciesContext[] speciesContexts = model.getSpeciesContexts();
for (int i = 0; i < speciesContexts.length; i++) {
ccImpl.addSimpleBound(new SimpleBounds(speciesContexts[i].getName(), new RealInterval(0, Double.POSITIVE_INFINITY), AbstractConstraint.PHYSICAL_LIMIT, "non-negative concentration"));
}
for (int i = 0; i < speciesContexts.length; i++) {
SpeciesContextSpecParameter initParam = (simContext.getReactionContext().getSpeciesContextSpec(speciesContexts[i])).getInitialConditionParameter();
if (initParam != null) {
double initialValue = initParam.getExpression().evaluateConstant();
ccImpl.addSimpleBound(new SimpleBounds(speciesContexts[i].getName(), new RealInterval(initialValue), AbstractConstraint.MODELING_ASSUMPTION, "specified \"initialCondition\""));
}
}
// =========================
// add modeling assumptions
// =========================
//
// mass action forward and reverse rates should be non-negative
//
cbit.vcell.model.ReactionStep[] reactionSteps = model.getReactionSteps();
for (int i = 0; i < reactionSteps.length; i++) {
Kinetics kinetics = reactionSteps[i].getKinetics();
if (kinetics instanceof MassActionKinetics) {
Expression forwardRateConstraintExp = new Expression(((MassActionKinetics) kinetics).getForwardRateParameter().getExpression().infix() + ">=0");
forwardRateConstraintExp = getSteadyStateExpression(forwardRateConstraintExp);
if (!forwardRateConstraintExp.compareEqual(new Expression(1.0))) {
ccImpl.addGeneralConstraint(new GeneralConstraint(forwardRateConstraintExp, AbstractConstraint.MODELING_ASSUMPTION, "non-negative forward rate"));
}
Expression reverseRateConstraintExp = new Expression(((MassActionKinetics) kinetics).getReverseRateParameter().getExpression().infix() + ">=0");
reverseRateConstraintExp = getSteadyStateExpression(reverseRateConstraintExp);
if (!reverseRateConstraintExp.compareEqual(new Expression(1.0))) {
ccImpl.addGeneralConstraint(new GeneralConstraint(reverseRateConstraintExp, AbstractConstraint.MODELING_ASSUMPTION, "non-negative reverse rate"));
}
}
KineticsParameter authoritativeParameter = kinetics.getAuthoritativeParameter();
Expression kineticRateConstraintExp = new Expression(authoritativeParameter.getName() + "==" + authoritativeParameter.getExpression().infix());
kineticRateConstraintExp = getSteadyStateExpression(kineticRateConstraintExp);
if (!kineticRateConstraintExp.compareEqual(new Expression(1.0))) {
ccImpl.addGeneralConstraint(new GeneralConstraint(kineticRateConstraintExp, AbstractConstraint.MODELING_ASSUMPTION, "definition"));
}
}
//
for (int i = 0; i < reactionSteps.length; i++) {
Kinetics kinetics = reactionSteps[i].getKinetics();
Kinetics.KineticsParameter[] parameters = kinetics.getKineticsParameters();
for (int j = 0; j < parameters.length; j++) {
Expression exp = parameters[j].getExpression();
if (exp.getSymbols() == null || exp.getSymbols().length == 0) {
//
try {
double constantValue = exp.evaluateConstant();
RealInterval interval = new RealInterval(constantValue);
ccImpl.addSimpleBound(new SimpleBounds(parameters[j].getName(), interval, AbstractConstraint.MODELING_ASSUMPTION, "model value"));
} catch (cbit.vcell.parser.ExpressionException e) {
System.out.println("error evaluating parameter " + parameters[j].getName() + " in reaction step " + reactionSteps[i].getName());
}
} else {
Expression parameterDefinitionExp = new Expression(parameters[j].getName() + "==" + parameters[j].getExpression().infix());
parameterDefinitionExp = getSteadyStateExpression(parameterDefinitionExp);
if (!parameterDefinitionExp.compareEqual(new Expression(1.0))) {
ccImpl.addGeneralConstraint(new GeneralConstraint(parameterDefinitionExp, AbstractConstraint.MODELING_ASSUMPTION, "parameter definition"));
}
}
}
}
ccImpl.addSimpleBound(new SimpleBounds(model.getFARADAY_CONSTANT().getName(), new RealInterval(model.getFARADAY_CONSTANT().getExpression().evaluateConstant()), AbstractConstraint.PHYSICAL_LIMIT, "Faraday's constant"));
ccImpl.addSimpleBound(new SimpleBounds(model.getTEMPERATURE().getName(), new RealInterval(300), AbstractConstraint.PHYSICAL_LIMIT, "Absolute Temperature Kelvin"));
ccImpl.addSimpleBound(new SimpleBounds(model.getGAS_CONSTANT().getName(), new RealInterval(model.getGAS_CONSTANT().getExpression().evaluateConstant()), AbstractConstraint.PHYSICAL_LIMIT, "ideal gas constant"));
ccImpl.addSimpleBound(new SimpleBounds(model.getKMILLIVOLTS().getName(), new RealInterval(model.getKMILLIVOLTS().getExpression().evaluateConstant()), AbstractConstraint.PHYSICAL_LIMIT, "ideal gas constant"));
return ccImpl;
} catch (cbit.vcell.parser.ExpressionException e) {
e.printStackTrace(System.out);
return null;
} catch (java.beans.PropertyVetoException e) {
e.printStackTrace(System.out);
return null;
}
}
use of cbit.vcell.constraints.SimpleBounds in project vcell by virtualcell.
the class StructureSizeSolver method updateUnitStructureSizes.
/**
* Insert the method's description here.
* Creation date: (5/17/2006 10:33:38 AM)
* @return double[]
* @param structName java.lang.String
* @param structSize double
*/
public static void updateUnitStructureSizes(SimulationContext simContext, GeometryClass geometryClass) {
if (simContext.getGeometryContext().getGeometry().getDimension() == 0) {
return;
}
StructureMapping[] myStructMappings = simContext.getGeometryContext().getStructureMappings(geometryClass);
if (myStructMappings != null && myStructMappings.length == 1) {
// if the unitSizeParameter is dimensionless, then features are mapped to SubVolumes or Membranes are mapped to surfaces (should sum to 1)
boolean bDimensionless = myStructMappings[0].getUnitSizeParameter().getUnitDefinition().isEquivalent(simContext.getModel().getUnitSystem().getInstance_DIMENSIONLESS());
if (bDimensionless) {
try {
myStructMappings[0].getUnitSizeParameter().setExpression(new Expression(1.0));
return;
} catch (ExpressionException e) {
e.printStackTrace(System.out);
throw new RuntimeException(e.getMessage());
}
}
}
if (myStructMappings != null && myStructMappings.length == 0) {
// nothing to solve, there are no mappings for this geometryClass
return;
}
StructureMapping[] structMappings = simContext.getGeometryContext().getStructureMappings();
try {
ConstraintContainerImpl ccImpl = new ConstraintContainerImpl();
Structure struct = null;
Expression totalVolExpr = new Expression(0.0);
StructureTopology structureTopology = simContext.getModel().getStructureTopology();
for (int i = 0; i < structMappings.length; i++) {
if (structMappings[i].getGeometryClass() != geometryClass) {
continue;
}
// new model with unit sizes already
if (structMappings[i].getUnitSizeParameter() != null && structMappings[i].getUnitSizeParameter().getExpression() != null) {
return;
}
if (struct == null) {
struct = structMappings[i].getStructure();
}
if (structMappings[i] instanceof MembraneMapping) {
MembraneMapping membraneMapping = (MembraneMapping) structMappings[i];
Membrane membrane = membraneMapping.getMembrane();
String membraneSizeName = TokenMangler.mangleToSName(membrane.getName() + "_size");
ccImpl.addSimpleBound(new SimpleBounds(membraneSizeName, new RealInterval(0, 100000), AbstractConstraint.PHYSICAL_LIMIT, "definition"));
Feature insideFeature = structureTopology.getInsideFeature(membrane);
String volFractName = TokenMangler.mangleToSName(insideFeature.getName() + "_volFract");
String svRatioName = TokenMangler.mangleToSName(insideFeature.getName() + "_svRatio");
StructureMapping.StructureMappingParameter volFractParameter = membraneMapping.getVolumeFractionParameter();
double volFractValue = volFractParameter.getExpression().evaluateConstant();
ccImpl.addSimpleBound(new SimpleBounds(volFractName, new RealInterval(volFractValue, volFractValue), AbstractConstraint.MODELING_ASSUMPTION, "from model"));
StructureMapping.StructureMappingParameter surfToVolParameter = membraneMapping.getSurfaceToVolumeParameter();
double svRatioValue = surfToVolParameter.getExpression().evaluateConstant();
ccImpl.addSimpleBound(new SimpleBounds(svRatioName, new RealInterval(svRatioValue, svRatioValue), AbstractConstraint.MODELING_ASSUMPTION, "from model"));
// membrane mapped to volume
if (geometryClass instanceof SubVolume) {
//
// EC eclosing cyt, which contains er and golgi
// "(cyt_size+ er_size + golgi_size) * cyt_svRatio - PM_size == 0"
//
Expression sumOfInsideVolumeExp = new Expression(0.0);
for (int j = 0; j < structMappings.length; j++) {
if (structMappings[j] instanceof FeatureMapping && structureTopology.enclosedBy(structMappings[j].getStructure(), insideFeature)) {
Feature childFeatureOfInside = ((FeatureMapping) structMappings[j]).getFeature();
if (simContext.getGeometryContext().getStructureMapping(childFeatureOfInside).getGeometryClass() == geometryClass) {
sumOfInsideVolumeExp = Expression.add(sumOfInsideVolumeExp, new Expression(TokenMangler.mangleToSName(childFeatureOfInside.getName() + "_size")));
}
}
}
Expression tempExpr = Expression.mult(sumOfInsideVolumeExp, new Expression(svRatioName));
tempExpr = Expression.add(tempExpr, new Expression("-" + membraneSizeName));
ccImpl.addGeneralConstraint(new GeneralConstraint(new Expression(tempExpr.infix() + "==0"), AbstractConstraint.MODELING_ASSUMPTION, "svRatio definition"));
//
// EC eclosing cyt, which contains er and golgi
// (EC_size + cyt_size + er_size + golgi_size) * cyt_vfRatio - (cyt_size + er_size + golgi_size) == 0
//
Feature outsideFeature = structureTopology.getOutsideFeature(membrane);
Expression sumOfParentVolumeExp = new Expression(0.0);
for (int j = 0; j < structMappings.length; j++) {
if (structMappings[j] instanceof FeatureMapping && structureTopology.enclosedBy(structMappings[j].getStructure(), outsideFeature)) {
Feature childFeatureOfParent = ((FeatureMapping) structMappings[j]).getFeature();
if (simContext.getGeometryContext().getStructureMapping(childFeatureOfParent).getGeometryClass() == geometryClass) {
sumOfParentVolumeExp = Expression.add(sumOfParentVolumeExp, new Expression(TokenMangler.mangleToSName(childFeatureOfParent.getName() + "_size")));
}
}
}
Expression exp = Expression.mult(sumOfParentVolumeExp, new Expression(volFractName));
exp = Expression.add(exp, Expression.negate(sumOfInsideVolumeExp));
ccImpl.addGeneralConstraint(new GeneralConstraint(new Expression(exp.infix() + "==0.0"), AbstractConstraint.MODELING_ASSUMPTION, "volFract definition"));
}
} else if (structMappings[i] instanceof FeatureMapping) {
FeatureMapping featureMapping = (FeatureMapping) structMappings[i];
String featureSizeName = TokenMangler.mangleToSName(featureMapping.getFeature().getName() + "_size");
totalVolExpr = Expression.add(totalVolExpr, new Expression(featureSizeName));
ccImpl.addSimpleBound(new SimpleBounds(featureSizeName, new RealInterval(0, 1), AbstractConstraint.PHYSICAL_LIMIT, "definition"));
}
}
if (geometryClass instanceof SubVolume) {
ccImpl.addGeneralConstraint(new GeneralConstraint(new Expression(totalVolExpr.infix() + "==1.0"), AbstractConstraint.MODELING_ASSUMPTION, "total volume"));
}
// ccImpl.show();
ConstraintSolver constraintSolver = new ConstraintSolver(ccImpl);
constraintSolver.resetIntervals();
int numTimesNarrowed = 0;
RealInterval[] lastSolution = null;
boolean bChanged = true;
while (constraintSolver.narrow() && bChanged && numTimesNarrowed < 125) {
numTimesNarrowed++;
bChanged = false;
RealInterval[] thisSolution = constraintSolver.getIntervals();
if (lastSolution != null) {
for (int i = 0; i < thisSolution.length; i++) {
if (!thisSolution[i].equals(lastSolution[i])) {
bChanged = true;
}
}
} else {
bChanged = true;
}
lastSolution = thisSolution;
}
System.out.println("num of times narrowed = " + numTimesNarrowed);
if (numTimesNarrowed > 0) {
String[] symbols = constraintSolver.getSymbols();
net.sourceforge.interval.ia_math.RealInterval[] solution = constraintSolver.getIntervals();
double totalArea = 0;
double totalVolume = 0;
for (int i = 0; i < symbols.length; i++) {
System.out.println("solution[" + i + "] \"" + symbols[i] + "\" = " + solution[i]);
for (int j = 0; j < structMappings.length; j++) {
if (symbols[i].equals(TokenMangler.mangleToSName(structMappings[j].getStructure().getName() + "_size"))) {
if (!Double.isInfinite(solution[i].lo()) && !Double.isInfinite(solution[i].hi())) {
double value = (solution[i].lo() + solution[i].hi()) / 2;
Expression exp = new Expression(value);
if (structMappings[j] instanceof FeatureMapping) {
FeatureMapping fm = (FeatureMapping) structMappings[j];
totalVolume += value;
if (geometryClass instanceof SubVolume) {
fm.getVolumePerUnitVolumeParameter().setExpression(exp);
} else if (geometryClass instanceof SurfaceClass) {
fm.getVolumePerUnitAreaParameter().setExpression(exp);
}
} else if (structMappings[j] instanceof MembraneMapping) {
MembraneMapping mm = (MembraneMapping) structMappings[j];
totalArea += value;
if (geometryClass instanceof SubVolume) {
mm.getAreaPerUnitVolumeParameter().setExpression(exp);
} else if (geometryClass instanceof SurfaceClass) {
mm.getAreaPerUnitAreaParameter().setExpression(exp);
}
}
}
}
}
}
//
// normalize all so that total volume is 1.0 for subVolumes or
// total area is 1.0 for surfaceClasses
//
double scaleFactor = 1;
if (geometryClass instanceof SubVolume) {
scaleFactor = totalVolume;
} else if (geometryClass instanceof SurfaceClass) {
scaleFactor = totalArea;
} else {
throw new RuntimeException("unexpected GeometryClass");
}
for (int j = 0; j < structMappings.length; j++) {
if (structMappings[j].getGeometryClass() == geometryClass) {
if (structMappings[j] instanceof FeatureMapping) {
FeatureMapping fm = (FeatureMapping) structMappings[j];
if (geometryClass instanceof SubVolume) {
fm.getVolumePerUnitVolumeParameter().setExpression(new Expression(fm.getVolumePerUnitVolumeParameter().getExpression().evaluateConstant() / scaleFactor));
} else if (geometryClass instanceof SurfaceClass) {
fm.getVolumePerUnitAreaParameter().setExpression(new Expression(fm.getVolumePerUnitAreaParameter().getExpression().evaluateConstant() / scaleFactor));
}
} else if (structMappings[j] instanceof MembraneMapping) {
MembraneMapping mm = (MembraneMapping) structMappings[j];
if (geometryClass instanceof SubVolume) {
mm.getAreaPerUnitVolumeParameter().setExpression(new Expression(mm.getAreaPerUnitVolumeParameter().getExpression().evaluateConstant() / scaleFactor));
} else if (geometryClass instanceof SurfaceClass) {
mm.getAreaPerUnitAreaParameter().setExpression(new Expression(mm.getAreaPerUnitAreaParameter().getExpression().evaluateConstant() / scaleFactor));
}
}
}
}
} else {
throw new RuntimeException("cannot solve for size");
}
} catch (ExpressionException e) {
e.printStackTrace(System.out);
throw new RuntimeException(e.getMessage());
} catch (java.beans.PropertyVetoException e) {
e.printStackTrace(System.out);
throw new RuntimeException(e.getMessage());
}
}
Aggregations