use of cern.colt.matrix.impl.DenseDoubleMatrix1D in project tetrad by cmu-phil.
the class Ricf method ricf2.
/**
* same as above but takes a Graph instead of a SemGraph *
*/
public RicfResult ricf2(Graph mag, ICovarianceMatrix covMatrix, double tolerance) {
// mag.setShowErrorTerms(false);
DoubleFactory2D factory = DoubleFactory2D.dense;
Algebra algebra = new Algebra();
DoubleMatrix2D S = new DenseDoubleMatrix2D(covMatrix.getMatrix().toArray());
int p = covMatrix.getDimension();
if (p == 1) {
return new RicfResult(S, S, null, null, 1, Double.NaN, covMatrix);
}
List<Node> nodes = new ArrayList<>();
for (String name : covMatrix.getVariableNames()) {
nodes.add(mag.getNode(name));
}
DoubleMatrix2D omega = factory.diagonal(factory.diagonal(S));
DoubleMatrix2D B = factory.identity(p);
int[] ug = ugNodes(mag, nodes);
int[] ugComp = complement(p, ug);
if (ug.length > 0) {
List<Node> _ugNodes = new LinkedList<>();
for (int i : ug) {
_ugNodes.add(nodes.get(i));
}
Graph ugGraph = mag.subgraph(_ugNodes);
ICovarianceMatrix ugCov = covMatrix.getSubmatrix(ug);
DoubleMatrix2D lambdaInv = fitConGraph(ugGraph, ugCov, p + 1, tolerance).shat;
omega.viewSelection(ug, ug).assign(lambdaInv);
}
// Prepare lists of parents and spouses.
int[][] pars = parentIndices(p, mag, nodes);
int[][] spo = spouseIndices(p, mag, nodes);
int i = 0;
double _diff;
while (true) {
i++;
DoubleMatrix2D omegaOld = omega.copy();
DoubleMatrix2D bOld = B.copy();
for (int _v = 0; _v < p; _v++) {
// Exclude the UG part.
if (Arrays.binarySearch(ug, _v) >= 0) {
continue;
}
int[] v = new int[] { _v };
int[] vcomp = complement(p, v);
int[] all = range(0, p - 1);
int[] parv = pars[_v];
int[] spov = spo[_v];
DoubleMatrix2D a6 = B.viewSelection(v, parv);
if (spov.length == 0) {
if (parv.length != 0) {
if (i == 1) {
DoubleMatrix2D a1 = S.viewSelection(parv, parv);
DoubleMatrix2D a2 = S.viewSelection(v, parv);
DoubleMatrix2D a3 = algebra.inverse(a1);
DoubleMatrix2D a4 = algebra.mult(a2, a3);
a4.assign(Mult.mult(-1));
a6.assign(a4);
DoubleMatrix2D a7 = S.viewSelection(parv, v);
DoubleMatrix2D a9 = algebra.mult(a6, a7);
DoubleMatrix2D a8 = S.viewSelection(v, v);
DoubleMatrix2D a8b = omega.viewSelection(v, v);
a8b.assign(a8);
omega.viewSelection(v, v).assign(a9, PlusMult.plusMult(1));
}
}
} else {
if (parv.length != 0) {
DoubleMatrix2D oInv = new DenseDoubleMatrix2D(p, p);
DoubleMatrix2D a2 = omega.viewSelection(vcomp, vcomp);
DoubleMatrix2D a3 = algebra.inverse(a2);
oInv.viewSelection(vcomp, vcomp).assign(a3);
DoubleMatrix2D Z = algebra.mult(oInv.viewSelection(spov, vcomp), B.viewSelection(vcomp, all));
int lpa = parv.length;
int lspo = spov.length;
// Build XX
DoubleMatrix2D XX = new DenseDoubleMatrix2D(lpa + lspo, lpa + lspo);
int[] range1 = range(0, lpa - 1);
int[] range2 = range(lpa, lpa + lspo - 1);
// Upper left quadrant
XX.viewSelection(range1, range1).assign(S.viewSelection(parv, parv));
// Upper right quadrant
DoubleMatrix2D a11 = algebra.mult(S.viewSelection(parv, all), algebra.transpose(Z));
XX.viewSelection(range1, range2).assign(a11);
// Lower left quadrant
DoubleMatrix2D a12 = XX.viewSelection(range2, range1);
DoubleMatrix2D a13 = algebra.transpose(XX.viewSelection(range1, range2));
a12.assign(a13);
// Lower right quadrant
DoubleMatrix2D a14 = XX.viewSelection(range2, range2);
DoubleMatrix2D a15 = algebra.mult(Z, S);
DoubleMatrix2D a16 = algebra.mult(a15, algebra.transpose(Z));
a14.assign(a16);
// Build XY
DoubleMatrix1D YX = new DenseDoubleMatrix1D(lpa + lspo);
DoubleMatrix1D a17 = YX.viewSelection(range1);
DoubleMatrix1D a18 = S.viewSelection(v, parv).viewRow(0);
a17.assign(a18);
DoubleMatrix1D a19 = YX.viewSelection(range2);
DoubleMatrix2D a20 = S.viewSelection(v, all);
DoubleMatrix1D a21 = algebra.mult(a20, algebra.transpose(Z)).viewRow(0);
a19.assign(a21);
// Temp
DoubleMatrix2D a22 = algebra.inverse(XX);
DoubleMatrix1D temp = algebra.mult(algebra.transpose(a22), YX);
// Assign to b.
DoubleMatrix1D a23 = a6.viewRow(0);
DoubleMatrix1D a24 = temp.viewSelection(range1);
a23.assign(a24);
a23.assign(Mult.mult(-1));
// Assign to omega.
omega.viewSelection(v, spov).viewRow(0).assign(temp.viewSelection(range2));
omega.viewSelection(spov, v).viewColumn(0).assign(temp.viewSelection(range2));
// Variance.
double tempVar = S.get(_v, _v) - algebra.mult(temp, YX);
DoubleMatrix2D a27 = omega.viewSelection(v, spov);
DoubleMatrix2D a28 = oInv.viewSelection(spov, spov);
DoubleMatrix2D a29 = omega.viewSelection(spov, v).copy();
DoubleMatrix2D a30 = algebra.mult(a27, a28);
DoubleMatrix2D a31 = algebra.mult(a30, a29);
omega.viewSelection(v, v).assign(tempVar);
omega.viewSelection(v, v).assign(a31, PlusMult.plusMult(1));
} else {
DoubleMatrix2D oInv = new DenseDoubleMatrix2D(p, p);
DoubleMatrix2D a2 = omega.viewSelection(vcomp, vcomp);
DoubleMatrix2D a3 = algebra.inverse(a2);
oInv.viewSelection(vcomp, vcomp).assign(a3);
// System.out.println("O.inv = " + oInv);
DoubleMatrix2D a4 = oInv.viewSelection(spov, vcomp);
DoubleMatrix2D a5 = B.viewSelection(vcomp, all);
DoubleMatrix2D Z = algebra.mult(a4, a5);
// System.out.println("Z = " + Z);
// Build XX
DoubleMatrix2D XX = algebra.mult(algebra.mult(Z, S), Z.viewDice());
// System.out.println("XX = " + XX);
// Build XY
DoubleMatrix2D a20 = S.viewSelection(v, all);
DoubleMatrix1D YX = algebra.mult(a20, Z.viewDice()).viewRow(0);
// System.out.println("YX = " + YX);
// Temp
DoubleMatrix2D a22 = algebra.inverse(XX);
DoubleMatrix1D a23 = algebra.mult(algebra.transpose(a22), YX);
// Assign to omega.
DoubleMatrix1D a24 = omega.viewSelection(v, spov).viewRow(0);
a24.assign(a23);
DoubleMatrix1D a25 = omega.viewSelection(spov, v).viewColumn(0);
a25.assign(a23);
// System.out.println("Omega 2 " + omega);
// Variance.
double tempVar = S.get(_v, _v) - algebra.mult(a24, YX);
// System.out.println("tempVar = " + tempVar);
DoubleMatrix2D a27 = omega.viewSelection(v, spov);
DoubleMatrix2D a28 = oInv.viewSelection(spov, spov);
DoubleMatrix2D a29 = omega.viewSelection(spov, v).copy();
DoubleMatrix2D a30 = algebra.mult(a27, a28);
DoubleMatrix2D a31 = algebra.mult(a30, a29);
omega.set(_v, _v, tempVar + a31.get(0, 0));
// System.out.println("Omega final " + omega);
}
}
}
DoubleMatrix2D a32 = omega.copy();
a32.assign(omegaOld, PlusMult.plusMult(-1));
double diff1 = algebra.norm1(a32);
DoubleMatrix2D a33 = B.copy();
a33.assign(bOld, PlusMult.plusMult(-1));
double diff2 = algebra.norm1(a32);
double diff = diff1 + diff2;
_diff = diff;
if (diff < tolerance)
break;
}
DoubleMatrix2D a34 = algebra.inverse(B);
DoubleMatrix2D a35 = algebra.inverse(B.viewDice());
DoubleMatrix2D sigmahat = algebra.mult(algebra.mult(a34, omega), a35);
DoubleMatrix2D lambdahat = omega.copy();
DoubleMatrix2D a36 = lambdahat.viewSelection(ugComp, ugComp);
a36.assign(factory.make(ugComp.length, ugComp.length, 0.0));
DoubleMatrix2D omegahat = omega.copy();
DoubleMatrix2D a37 = omegahat.viewSelection(ug, ug);
a37.assign(factory.make(ug.length, ug.length, 0.0));
DoubleMatrix2D bhat = B.copy();
return new RicfResult(sigmahat, lambdahat, bhat, omegahat, i, _diff, covMatrix);
}
use of cern.colt.matrix.impl.DenseDoubleMatrix1D in project tetrad by cmu-phil.
the class Glasso method search.
public Result search() {
int niter = 0;
double eps = 1.0e-7;
int n = getN();
DoubleMatrix2D ss = getSs();
boolean approximateAlgorithm = isIa();
boolean warmStart = isIs();
boolean itr = isItr();
boolean pen = isIpen();
double thr = getThr();
// System.out.println(ss);
Rho rho = getRho();
DoubleMatrix2D ww = new DenseDoubleMatrix2D(n, n);
DoubleMatrix2D wwi = new DenseDoubleMatrix2D(n, n);
double dlx;
double del;
int nm1 = n - 1;
DoubleMatrix2D vv = new DenseDoubleMatrix2D(nm1, nm1);
DoubleMatrix2D xs = null;
if (!approximateAlgorithm) {
xs = new DenseDoubleMatrix2D(nm1, n);
}
DoubleMatrix1D s = new DenseDoubleMatrix1D(nm1);
DoubleMatrix1D so = new DenseDoubleMatrix1D(nm1);
DoubleMatrix1D x = new DenseDoubleMatrix1D(n - 1);
DoubleMatrix1D ws;
DoubleMatrix1D z = new DenseDoubleMatrix1D(nm1);
int[] mm = new int[nm1];
DoubleMatrix1D ro = new DenseDoubleMatrix1D(nm1);
// shr warmStart sum(abs(offdiagonal(ss))).
double shr = 0.0;
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
if (j == k)
continue;
shr += Math.abs(ss.get(j, k));
}
}
// (penalized if necessary).
if (shr == 0.0) {
for (int j = 0; j < n; j++) {
if (Thread.currentThread().isInterrupted()) {
break;
}
if (!pen) {
ww.set(j, j, ss.get(j, j));
} else {
ww.set(j, j, ss.get(j, j) + rho.get(j, j));
}
wwi.set(j, j, 1.0 / Math.max(ww.get(j, j), eps));
}
return new Result(ww, wwi, niter, Double.NaN);
}
shr = getThr() * shr / nm1;
if (approximateAlgorithm) {
if (!warmStart) {
zero(wwi);
}
for (int m = 0; m < n; m++) {
System.out.println("m = " + m);
// This sets up vv, s, and r--i.e., W.11, s.12, and r.12.
setup(m, n, ss, rho, ss, vv, s, ro);
// This sets up x.12--i.e. theta.12.
int l = -1;
for (int j = 0; j < n; j++) {
if (Thread.currentThread().isInterrupted()) {
break;
}
if (j == m)
continue;
l = l + 1;
x.set(l, wwi.get(j, m));
}
lasso(ro, nm1, vv, s, shr / n, x, z, mm);
l = -1;
for (int j = 0; j < n; j++) {
if (Thread.currentThread().isInterrupted()) {
break;
}
if (j == m)
continue;
l = l + 1;
wwi.set(j, m, x.get(l));
}
}
niter = 1;
return new Result(ww, wwi, niter, Double.NaN);
}
if (!warmStart) {
ww.assign(ss);
if (xs != null) {
zero(xs);
}
} else {
for (int j = 0; j < n; j++) {
double xjj = -wwi.get(j, j);
// System.out.println("xjj = " + xjj);
int l = -1;
for (int k = 0; k < n; k++) {
if (Thread.currentThread().isInterrupted()) {
break;
}
if (k == j)
continue;
l = l + 1;
xs.set(l, j, wwi.get(k, j) / xjj);
}
}
}
for (int j = 0; j < n; j++) {
if (pen) {
ww.set(j, j, ss.get(j, j) + rho.get(j, j));
} else {
ww.set(j, j, ss.get(j, j));
// System.out.println(ww);
}
}
niter = 0;
while (true) {
dlx = 0.0;
for (int m = 0; m < n; m++) {
if (itr) {
System.out.println("Outer loop = " + m);
}
x = xs.viewColumn(m);
// System.out.println(x);
// System.out.println();
ws = ww.viewColumn(m);
// This sets up vv, s, and ro--i.e., W.11, s.12, and r.12.
setup(m, n, ss, rho, ww, vv, s, ro);
so.assign(s);
// System.out.println("ww = " + ww);
// This updates s and x--the estimated correlation matrix and the reduced form of the
// estimated inverse covariance.
lasso(ro, nm1, vv, s, shr / sum_abs(vv), x, z, mm);
// lasso(ro,nm1,vv,s,thr/sum_abs(vv),x,z,mm);
int l = -1;
for (int j = 0; j < n; j++) {
if (Thread.currentThread().isInterrupted()) {
break;
}
if (j == m)
continue;
l = l + 1;
ww.set(j, m, so.get(l) - s.get(l));
ww.set(m, j, ww.get(j, m));
}
dlx = Math.max(dlx, sum_abs_diff(ww.viewColumn(m), ws));
// xs(:,m)=x
xs.viewColumn(m).assign(x);
}
niter = niter + 1;
if (niter < getMaxit())
break;
if (dlx < shr)
break;
}
del = dlx / nm1;
inv(n, ww, xs, wwi);
return new Result(ww, wwi, niter, del);
}
Aggregations