use of com.android.dx.rop.cst.Constant in project buck by facebook.
the class BytecodeArray method parseInstruction.
/**
* Parses the instruction at the indicated offset. Indicate the
* result by calling the visitor if supplied and by returning the
* number of bytes consumed by the instruction.
*
* <p>In order to simplify further processing, the opcodes passed
* to the visitor are canonicalized, altering the opcode to a more
* universal one and making formerly implicit arguments
* explicit. In particular:</p>
*
* <ul>
* <li>The opcodes to push literal constants of primitive types all become
* {@code ldc}.
* E.g., {@code fconst_0}, {@code sipush}, and
* {@code lconst_0} qualify for this treatment.</li>
* <li>{@code aconst_null} becomes {@code ldc} of a
* "known null."</li>
* <li>Shorthand local variable accessors become the corresponding
* longhand. E.g. {@code aload_2} becomes {@code aload}.</li>
* <li>{@code goto_w} and {@code jsr_w} become {@code goto}
* and {@code jsr} (respectively).</li>
* <li>{@code ldc_w} becomes {@code ldc}.</li>
* <li>{@code tableswitch} becomes {@code lookupswitch}.
* <li>Arithmetic, array, and value-returning ops are collapsed
* to the {@code int} variant opcode, with the {@code type}
* argument set to indicate the actual type. E.g.,
* {@code fadd} becomes {@code iadd}, but
* {@code type} is passed as {@code Type.FLOAT} in that
* case. Similarly, {@code areturn} becomes
* {@code ireturn}. (However, {@code return} remains
* unchanged.</li>
* <li>Local variable access ops are collapsed to the {@code int}
* variant opcode, with the {@code type} argument set to indicate
* the actual type. E.g., {@code aload} becomes {@code iload},
* but {@code type} is passed as {@code Type.OBJECT} in
* that case.</li>
* <li>Numeric conversion ops ({@code i2l}, etc.) are left alone
* to avoid too much confustion, but their {@code type} is
* the pushed type. E.g., {@code i2b} gets type
* {@code Type.INT}, and {@code f2d} gets type
* {@code Type.DOUBLE}. Other unaltered opcodes also get
* their pushed type. E.g., {@code arraylength} gets type
* {@code Type.INT}.</li>
* </ul>
*
* @param offset {@code >= 0, < bytes.size();} offset to the start of the
* instruction
* @param visitor {@code null-ok;} visitor to call back to
* @return the length of the instruction, in bytes
*/
public int parseInstruction(int offset, Visitor visitor) {
if (visitor == null) {
visitor = EMPTY_VISITOR;
}
try {
int opcode = bytes.getUnsignedByte(offset);
int info = ByteOps.opInfo(opcode);
int fmt = info & ByteOps.FMT_MASK;
switch(opcode) {
case ByteOps.NOP:
{
visitor.visitNoArgs(opcode, offset, 1, Type.VOID);
return 1;
}
case ByteOps.ACONST_NULL:
{
visitor.visitConstant(ByteOps.LDC, offset, 1, CstKnownNull.THE_ONE, 0);
return 1;
}
case ByteOps.ICONST_M1:
{
visitor.visitConstant(ByteOps.LDC, offset, 1, CstInteger.VALUE_M1, -1);
return 1;
}
case ByteOps.ICONST_0:
{
visitor.visitConstant(ByteOps.LDC, offset, 1, CstInteger.VALUE_0, 0);
return 1;
}
case ByteOps.ICONST_1:
{
visitor.visitConstant(ByteOps.LDC, offset, 1, CstInteger.VALUE_1, 1);
return 1;
}
case ByteOps.ICONST_2:
{
visitor.visitConstant(ByteOps.LDC, offset, 1, CstInteger.VALUE_2, 2);
return 1;
}
case ByteOps.ICONST_3:
{
visitor.visitConstant(ByteOps.LDC, offset, 1, CstInteger.VALUE_3, 3);
return 1;
}
case ByteOps.ICONST_4:
{
visitor.visitConstant(ByteOps.LDC, offset, 1, CstInteger.VALUE_4, 4);
return 1;
}
case ByteOps.ICONST_5:
{
visitor.visitConstant(ByteOps.LDC, offset, 1, CstInteger.VALUE_5, 5);
return 1;
}
case ByteOps.LCONST_0:
{
visitor.visitConstant(ByteOps.LDC, offset, 1, CstLong.VALUE_0, 0);
return 1;
}
case ByteOps.LCONST_1:
{
visitor.visitConstant(ByteOps.LDC, offset, 1, CstLong.VALUE_1, 0);
return 1;
}
case ByteOps.FCONST_0:
{
visitor.visitConstant(ByteOps.LDC, offset, 1, CstFloat.VALUE_0, 0);
return 1;
}
case ByteOps.FCONST_1:
{
visitor.visitConstant(ByteOps.LDC, offset, 1, CstFloat.VALUE_1, 0);
return 1;
}
case ByteOps.FCONST_2:
{
visitor.visitConstant(ByteOps.LDC, offset, 1, CstFloat.VALUE_2, 0);
return 1;
}
case ByteOps.DCONST_0:
{
visitor.visitConstant(ByteOps.LDC, offset, 1, CstDouble.VALUE_0, 0);
return 1;
}
case ByteOps.DCONST_1:
{
visitor.visitConstant(ByteOps.LDC, offset, 1, CstDouble.VALUE_1, 0);
return 1;
}
case ByteOps.BIPUSH:
{
int value = bytes.getByte(offset + 1);
visitor.visitConstant(ByteOps.LDC, offset, 2, CstInteger.make(value), value);
return 2;
}
case ByteOps.SIPUSH:
{
int value = bytes.getShort(offset + 1);
visitor.visitConstant(ByteOps.LDC, offset, 3, CstInteger.make(value), value);
return 3;
}
case ByteOps.LDC:
{
int idx = bytes.getUnsignedByte(offset + 1);
Constant cst = pool.get(idx);
int value = (cst instanceof CstInteger) ? ((CstInteger) cst).getValue() : 0;
visitor.visitConstant(ByteOps.LDC, offset, 2, cst, value);
return 2;
}
case ByteOps.LDC_W:
{
int idx = bytes.getUnsignedShort(offset + 1);
Constant cst = pool.get(idx);
int value = (cst instanceof CstInteger) ? ((CstInteger) cst).getValue() : 0;
visitor.visitConstant(ByteOps.LDC, offset, 3, cst, value);
return 3;
}
case ByteOps.LDC2_W:
{
int idx = bytes.getUnsignedShort(offset + 1);
Constant cst = pool.get(idx);
visitor.visitConstant(ByteOps.LDC2_W, offset, 3, cst, 0);
return 3;
}
case ByteOps.ILOAD:
{
int idx = bytes.getUnsignedByte(offset + 1);
visitor.visitLocal(ByteOps.ILOAD, offset, 2, idx, Type.INT, 0);
return 2;
}
case ByteOps.LLOAD:
{
int idx = bytes.getUnsignedByte(offset + 1);
visitor.visitLocal(ByteOps.ILOAD, offset, 2, idx, Type.LONG, 0);
return 2;
}
case ByteOps.FLOAD:
{
int idx = bytes.getUnsignedByte(offset + 1);
visitor.visitLocal(ByteOps.ILOAD, offset, 2, idx, Type.FLOAT, 0);
return 2;
}
case ByteOps.DLOAD:
{
int idx = bytes.getUnsignedByte(offset + 1);
visitor.visitLocal(ByteOps.ILOAD, offset, 2, idx, Type.DOUBLE, 0);
return 2;
}
case ByteOps.ALOAD:
{
int idx = bytes.getUnsignedByte(offset + 1);
visitor.visitLocal(ByteOps.ILOAD, offset, 2, idx, Type.OBJECT, 0);
return 2;
}
case ByteOps.ILOAD_0:
case ByteOps.ILOAD_1:
case ByteOps.ILOAD_2:
case ByteOps.ILOAD_3:
{
int idx = opcode - ByteOps.ILOAD_0;
visitor.visitLocal(ByteOps.ILOAD, offset, 1, idx, Type.INT, 0);
return 1;
}
case ByteOps.LLOAD_0:
case ByteOps.LLOAD_1:
case ByteOps.LLOAD_2:
case ByteOps.LLOAD_3:
{
int idx = opcode - ByteOps.LLOAD_0;
visitor.visitLocal(ByteOps.ILOAD, offset, 1, idx, Type.LONG, 0);
return 1;
}
case ByteOps.FLOAD_0:
case ByteOps.FLOAD_1:
case ByteOps.FLOAD_2:
case ByteOps.FLOAD_3:
{
int idx = opcode - ByteOps.FLOAD_0;
visitor.visitLocal(ByteOps.ILOAD, offset, 1, idx, Type.FLOAT, 0);
return 1;
}
case ByteOps.DLOAD_0:
case ByteOps.DLOAD_1:
case ByteOps.DLOAD_2:
case ByteOps.DLOAD_3:
{
int idx = opcode - ByteOps.DLOAD_0;
visitor.visitLocal(ByteOps.ILOAD, offset, 1, idx, Type.DOUBLE, 0);
return 1;
}
case ByteOps.ALOAD_0:
case ByteOps.ALOAD_1:
case ByteOps.ALOAD_2:
case ByteOps.ALOAD_3:
{
int idx = opcode - ByteOps.ALOAD_0;
visitor.visitLocal(ByteOps.ILOAD, offset, 1, idx, Type.OBJECT, 0);
return 1;
}
case ByteOps.IALOAD:
{
visitor.visitNoArgs(ByteOps.IALOAD, offset, 1, Type.INT);
return 1;
}
case ByteOps.LALOAD:
{
visitor.visitNoArgs(ByteOps.IALOAD, offset, 1, Type.LONG);
return 1;
}
case ByteOps.FALOAD:
{
visitor.visitNoArgs(ByteOps.IALOAD, offset, 1, Type.FLOAT);
return 1;
}
case ByteOps.DALOAD:
{
visitor.visitNoArgs(ByteOps.IALOAD, offset, 1, Type.DOUBLE);
return 1;
}
case ByteOps.AALOAD:
{
visitor.visitNoArgs(ByteOps.IALOAD, offset, 1, Type.OBJECT);
return 1;
}
case ByteOps.BALOAD:
{
/*
* Note: This is a load from either a byte[] or a
* boolean[].
*/
visitor.visitNoArgs(ByteOps.IALOAD, offset, 1, Type.BYTE);
return 1;
}
case ByteOps.CALOAD:
{
visitor.visitNoArgs(ByteOps.IALOAD, offset, 1, Type.CHAR);
return 1;
}
case ByteOps.SALOAD:
{
visitor.visitNoArgs(ByteOps.IALOAD, offset, 1, Type.SHORT);
return 1;
}
case ByteOps.ISTORE:
{
int idx = bytes.getUnsignedByte(offset + 1);
visitor.visitLocal(ByteOps.ISTORE, offset, 2, idx, Type.INT, 0);
return 2;
}
case ByteOps.LSTORE:
{
int idx = bytes.getUnsignedByte(offset + 1);
visitor.visitLocal(ByteOps.ISTORE, offset, 2, idx, Type.LONG, 0);
return 2;
}
case ByteOps.FSTORE:
{
int idx = bytes.getUnsignedByte(offset + 1);
visitor.visitLocal(ByteOps.ISTORE, offset, 2, idx, Type.FLOAT, 0);
return 2;
}
case ByteOps.DSTORE:
{
int idx = bytes.getUnsignedByte(offset + 1);
visitor.visitLocal(ByteOps.ISTORE, offset, 2, idx, Type.DOUBLE, 0);
return 2;
}
case ByteOps.ASTORE:
{
int idx = bytes.getUnsignedByte(offset + 1);
visitor.visitLocal(ByteOps.ISTORE, offset, 2, idx, Type.OBJECT, 0);
return 2;
}
case ByteOps.ISTORE_0:
case ByteOps.ISTORE_1:
case ByteOps.ISTORE_2:
case ByteOps.ISTORE_3:
{
int idx = opcode - ByteOps.ISTORE_0;
visitor.visitLocal(ByteOps.ISTORE, offset, 1, idx, Type.INT, 0);
return 1;
}
case ByteOps.LSTORE_0:
case ByteOps.LSTORE_1:
case ByteOps.LSTORE_2:
case ByteOps.LSTORE_3:
{
int idx = opcode - ByteOps.LSTORE_0;
visitor.visitLocal(ByteOps.ISTORE, offset, 1, idx, Type.LONG, 0);
return 1;
}
case ByteOps.FSTORE_0:
case ByteOps.FSTORE_1:
case ByteOps.FSTORE_2:
case ByteOps.FSTORE_3:
{
int idx = opcode - ByteOps.FSTORE_0;
visitor.visitLocal(ByteOps.ISTORE, offset, 1, idx, Type.FLOAT, 0);
return 1;
}
case ByteOps.DSTORE_0:
case ByteOps.DSTORE_1:
case ByteOps.DSTORE_2:
case ByteOps.DSTORE_3:
{
int idx = opcode - ByteOps.DSTORE_0;
visitor.visitLocal(ByteOps.ISTORE, offset, 1, idx, Type.DOUBLE, 0);
return 1;
}
case ByteOps.ASTORE_0:
case ByteOps.ASTORE_1:
case ByteOps.ASTORE_2:
case ByteOps.ASTORE_3:
{
int idx = opcode - ByteOps.ASTORE_0;
visitor.visitLocal(ByteOps.ISTORE, offset, 1, idx, Type.OBJECT, 0);
return 1;
}
case ByteOps.IASTORE:
{
visitor.visitNoArgs(ByteOps.IASTORE, offset, 1, Type.INT);
return 1;
}
case ByteOps.LASTORE:
{
visitor.visitNoArgs(ByteOps.IASTORE, offset, 1, Type.LONG);
return 1;
}
case ByteOps.FASTORE:
{
visitor.visitNoArgs(ByteOps.IASTORE, offset, 1, Type.FLOAT);
return 1;
}
case ByteOps.DASTORE:
{
visitor.visitNoArgs(ByteOps.IASTORE, offset, 1, Type.DOUBLE);
return 1;
}
case ByteOps.AASTORE:
{
visitor.visitNoArgs(ByteOps.IASTORE, offset, 1, Type.OBJECT);
return 1;
}
case ByteOps.BASTORE:
{
/*
* Note: This is a load from either a byte[] or a
* boolean[].
*/
visitor.visitNoArgs(ByteOps.IASTORE, offset, 1, Type.BYTE);
return 1;
}
case ByteOps.CASTORE:
{
visitor.visitNoArgs(ByteOps.IASTORE, offset, 1, Type.CHAR);
return 1;
}
case ByteOps.SASTORE:
{
visitor.visitNoArgs(ByteOps.IASTORE, offset, 1, Type.SHORT);
return 1;
}
case ByteOps.POP:
case ByteOps.POP2:
case ByteOps.DUP:
case ByteOps.DUP_X1:
case ByteOps.DUP_X2:
case ByteOps.DUP2:
case ByteOps.DUP2_X1:
case ByteOps.DUP2_X2:
case ByteOps.SWAP:
{
visitor.visitNoArgs(opcode, offset, 1, Type.VOID);
return 1;
}
case ByteOps.IADD:
case ByteOps.ISUB:
case ByteOps.IMUL:
case ByteOps.IDIV:
case ByteOps.IREM:
case ByteOps.INEG:
case ByteOps.ISHL:
case ByteOps.ISHR:
case ByteOps.IUSHR:
case ByteOps.IAND:
case ByteOps.IOR:
case ByteOps.IXOR:
{
visitor.visitNoArgs(opcode, offset, 1, Type.INT);
return 1;
}
case ByteOps.LADD:
case ByteOps.LSUB:
case ByteOps.LMUL:
case ByteOps.LDIV:
case ByteOps.LREM:
case ByteOps.LNEG:
case ByteOps.LSHL:
case ByteOps.LSHR:
case ByteOps.LUSHR:
case ByteOps.LAND:
case ByteOps.LOR:
case ByteOps.LXOR:
{
/*
* It's "opcode - 1" because, conveniently enough, all
* these long ops are one past the int variants.
*/
visitor.visitNoArgs(opcode - 1, offset, 1, Type.LONG);
return 1;
}
case ByteOps.FADD:
case ByteOps.FSUB:
case ByteOps.FMUL:
case ByteOps.FDIV:
case ByteOps.FREM:
case ByteOps.FNEG:
{
/*
* It's "opcode - 2" because, conveniently enough, all
* these float ops are two past the int variants.
*/
visitor.visitNoArgs(opcode - 2, offset, 1, Type.FLOAT);
return 1;
}
case ByteOps.DADD:
case ByteOps.DSUB:
case ByteOps.DMUL:
case ByteOps.DDIV:
case ByteOps.DREM:
case ByteOps.DNEG:
{
/*
* It's "opcode - 3" because, conveniently enough, all
* these double ops are three past the int variants.
*/
visitor.visitNoArgs(opcode - 3, offset, 1, Type.DOUBLE);
return 1;
}
case ByteOps.IINC:
{
int idx = bytes.getUnsignedByte(offset + 1);
int value = bytes.getByte(offset + 2);
visitor.visitLocal(opcode, offset, 3, idx, Type.INT, value);
return 3;
}
case ByteOps.I2L:
case ByteOps.F2L:
case ByteOps.D2L:
{
visitor.visitNoArgs(opcode, offset, 1, Type.LONG);
return 1;
}
case ByteOps.I2F:
case ByteOps.L2F:
case ByteOps.D2F:
{
visitor.visitNoArgs(opcode, offset, 1, Type.FLOAT);
return 1;
}
case ByteOps.I2D:
case ByteOps.L2D:
case ByteOps.F2D:
{
visitor.visitNoArgs(opcode, offset, 1, Type.DOUBLE);
return 1;
}
case ByteOps.L2I:
case ByteOps.F2I:
case ByteOps.D2I:
case ByteOps.I2B:
case ByteOps.I2C:
case ByteOps.I2S:
case ByteOps.LCMP:
case ByteOps.FCMPL:
case ByteOps.FCMPG:
case ByteOps.DCMPL:
case ByteOps.DCMPG:
case ByteOps.ARRAYLENGTH:
{
visitor.visitNoArgs(opcode, offset, 1, Type.INT);
return 1;
}
case ByteOps.IFEQ:
case ByteOps.IFNE:
case ByteOps.IFLT:
case ByteOps.IFGE:
case ByteOps.IFGT:
case ByteOps.IFLE:
case ByteOps.IF_ICMPEQ:
case ByteOps.IF_ICMPNE:
case ByteOps.IF_ICMPLT:
case ByteOps.IF_ICMPGE:
case ByteOps.IF_ICMPGT:
case ByteOps.IF_ICMPLE:
case ByteOps.IF_ACMPEQ:
case ByteOps.IF_ACMPNE:
case ByteOps.GOTO:
case ByteOps.JSR:
case ByteOps.IFNULL:
case ByteOps.IFNONNULL:
{
int target = offset + bytes.getShort(offset + 1);
visitor.visitBranch(opcode, offset, 3, target);
return 3;
}
case ByteOps.RET:
{
int idx = bytes.getUnsignedByte(offset + 1);
visitor.visitLocal(opcode, offset, 2, idx, Type.RETURN_ADDRESS, 0);
return 2;
}
case ByteOps.TABLESWITCH:
{
return parseTableswitch(offset, visitor);
}
case ByteOps.LOOKUPSWITCH:
{
return parseLookupswitch(offset, visitor);
}
case ByteOps.IRETURN:
{
visitor.visitNoArgs(ByteOps.IRETURN, offset, 1, Type.INT);
return 1;
}
case ByteOps.LRETURN:
{
visitor.visitNoArgs(ByteOps.IRETURN, offset, 1, Type.LONG);
return 1;
}
case ByteOps.FRETURN:
{
visitor.visitNoArgs(ByteOps.IRETURN, offset, 1, Type.FLOAT);
return 1;
}
case ByteOps.DRETURN:
{
visitor.visitNoArgs(ByteOps.IRETURN, offset, 1, Type.DOUBLE);
return 1;
}
case ByteOps.ARETURN:
{
visitor.visitNoArgs(ByteOps.IRETURN, offset, 1, Type.OBJECT);
return 1;
}
case ByteOps.RETURN:
case ByteOps.ATHROW:
case ByteOps.MONITORENTER:
case ByteOps.MONITOREXIT:
{
visitor.visitNoArgs(opcode, offset, 1, Type.VOID);
return 1;
}
case ByteOps.GETSTATIC:
case ByteOps.PUTSTATIC:
case ByteOps.GETFIELD:
case ByteOps.PUTFIELD:
case ByteOps.INVOKEVIRTUAL:
case ByteOps.INVOKESPECIAL:
case ByteOps.INVOKESTATIC:
case ByteOps.NEW:
case ByteOps.ANEWARRAY:
case ByteOps.CHECKCAST:
case ByteOps.INSTANCEOF:
{
int idx = bytes.getUnsignedShort(offset + 1);
Constant cst = pool.get(idx);
visitor.visitConstant(opcode, offset, 3, cst, 0);
return 3;
}
case ByteOps.INVOKEINTERFACE:
{
int idx = bytes.getUnsignedShort(offset + 1);
int count = bytes.getUnsignedByte(offset + 3);
int expectZero = bytes.getUnsignedByte(offset + 4);
Constant cst = pool.get(idx);
visitor.visitConstant(opcode, offset, 5, cst, count | (expectZero << 8));
return 5;
}
case ByteOps.INVOKEDYNAMIC:
{
throw new ParseException("invokedynamic not supported");
}
case ByteOps.NEWARRAY:
{
return parseNewarray(offset, visitor);
}
case ByteOps.WIDE:
{
return parseWide(offset, visitor);
}
case ByteOps.MULTIANEWARRAY:
{
int idx = bytes.getUnsignedShort(offset + 1);
int dimensions = bytes.getUnsignedByte(offset + 3);
Constant cst = pool.get(idx);
visitor.visitConstant(opcode, offset, 4, cst, dimensions);
return 4;
}
case ByteOps.GOTO_W:
case ByteOps.JSR_W:
{
int target = offset + bytes.getInt(offset + 1);
int newop = (opcode == ByteOps.GOTO_W) ? ByteOps.GOTO : ByteOps.JSR;
visitor.visitBranch(newop, offset, 5, target);
return 5;
}
default:
{
visitor.visitInvalid(opcode, offset, 1);
return 1;
}
}
} catch (SimException ex) {
ex.addContext("...at bytecode offset " + Hex.u4(offset));
throw ex;
} catch (RuntimeException ex) {
SimException se = new SimException(ex);
se.addContext("...at bytecode offset " + Hex.u4(offset));
throw se;
}
}
use of com.android.dx.rop.cst.Constant in project J2ME-Loader by nikita36078.
the class RopperMachine method run.
/**
* {@inheritDoc}
*/
@Override
public void run(Frame frame, int offset, int opcode) {
/*
* This is the stack pointer after the opcode's arguments have been
* popped.
*/
int stackPointer = maxLocals + frame.getStack().size();
// The sources have to be retrieved before super.run() gets called.
RegisterSpecList sources = getSources(opcode, stackPointer);
int sourceCount = sources.size();
super.run(frame, offset, opcode);
SourcePosition pos = method.makeSourcePosistion(offset);
RegisterSpec localTarget = getLocalTarget(opcode == ByteOps.ISTORE);
int destCount = resultCount();
RegisterSpec dest;
if (destCount == 0) {
dest = null;
switch(opcode) {
case ByteOps.POP:
case ByteOps.POP2:
{
// These simply don't appear in the rop form.
return;
}
}
} else if (localTarget != null) {
dest = localTarget;
} else if (destCount == 1) {
dest = RegisterSpec.make(stackPointer, result(0));
} else {
/*
* This clause only ever applies to the stack manipulation
* ops that have results (that is, dup* and swap but not
* pop*).
*
* What we do is first move all the source registers into
* the "temporary stack" area defined for the method, and
* then move stuff back down onto the main "stack" in the
* arrangement specified by the stack op pattern.
*
* Note: This code ends up emitting a lot of what will
* turn out to be superfluous moves (e.g., moving back and
* forth to the same local when doing a dup); however,
* that makes this code a bit easier (and goodness knows
* it doesn't need any extra complexity), and all the SSA
* stuff is going to want to deal with this sort of
* superfluous assignment anyway, so it should be a wash
* in the end.
*/
int scratchAt = ropper.getFirstTempStackReg();
RegisterSpec[] scratchRegs = new RegisterSpec[sourceCount];
for (int i = 0; i < sourceCount; i++) {
RegisterSpec src = sources.get(i);
TypeBearer type = src.getTypeBearer();
RegisterSpec scratch = src.withReg(scratchAt);
insns.add(new PlainInsn(Rops.opMove(type), pos, scratch, src));
scratchRegs[i] = scratch;
scratchAt += src.getCategory();
}
for (int pattern = getAuxInt(); pattern != 0; pattern >>= 4) {
int which = (pattern & 0x0f) - 1;
RegisterSpec scratch = scratchRegs[which];
TypeBearer type = scratch.getTypeBearer();
insns.add(new PlainInsn(Rops.opMove(type), pos, scratch.withReg(stackPointer), scratch));
stackPointer += type.getType().getCategory();
}
return;
}
TypeBearer destType = (dest != null) ? dest : Type.VOID;
Constant cst = getAuxCst();
int ropOpcode;
Rop rop;
Insn insn;
if (opcode == ByteOps.MULTIANEWARRAY) {
blockCanThrow = true;
// Add the extra instructions for handling multianewarray.
extraBlockCount = 6;
/*
* Add an array constructor for the int[] containing all the
* dimensions.
*/
RegisterSpec dimsReg = RegisterSpec.make(dest.getNextReg(), Type.INT_ARRAY);
rop = Rops.opFilledNewArray(Type.INT_ARRAY, sourceCount);
insn = new ThrowingCstInsn(rop, pos, sources, catches, CstType.INT_ARRAY);
insns.add(insn);
// Add a move-result for the new-filled-array
rop = Rops.opMoveResult(Type.INT_ARRAY);
insn = new PlainInsn(rop, pos, dimsReg, RegisterSpecList.EMPTY);
insns.add(insn);
/*
* Add a const-class instruction for the specified array
* class.
*/
/*
* Remove as many dimensions from the originally specified
* class as are given in the explicit list of dimensions,
* so as to pass the right component class to the standard
* Java library array constructor.
*/
Type componentType = ((CstType) cst).getClassType();
for (int i = 0; i < sourceCount; i++) {
componentType = componentType.getComponentType();
}
RegisterSpec classReg = RegisterSpec.make(dest.getReg(), Type.CLASS);
if (componentType.isPrimitive()) {
/*
* The component type is primitive (e.g., int as opposed
* to Integer), so we have to fetch the corresponding
* TYPE class.
*/
CstFieldRef typeField = CstFieldRef.forPrimitiveType(componentType);
insn = new ThrowingCstInsn(Rops.GET_STATIC_OBJECT, pos, RegisterSpecList.EMPTY, catches, typeField);
} else {
/*
* The component type is an object type, so just make a
* normal class reference.
*/
insn = new ThrowingCstInsn(Rops.CONST_OBJECT, pos, RegisterSpecList.EMPTY, catches, new CstType(componentType));
}
insns.add(insn);
// Add a move-result-pseudo for the get-static or const
rop = Rops.opMoveResultPseudo(classReg.getType());
insn = new PlainInsn(rop, pos, classReg, RegisterSpecList.EMPTY);
insns.add(insn);
/*
* Add a call to the "multianewarray method," that is,
* Array.newInstance(class, dims). Note: The result type
* of newInstance() is Object, which is why the last
* instruction in this sequence is a cast to the right
* type for the original instruction.
*/
RegisterSpec objectReg = RegisterSpec.make(dest.getReg(), Type.OBJECT);
insn = new ThrowingCstInsn(Rops.opInvokeStatic(MULTIANEWARRAY_METHOD.getPrototype()), pos, RegisterSpecList.make(classReg, dimsReg), catches, MULTIANEWARRAY_METHOD);
insns.add(insn);
// Add a move-result.
rop = Rops.opMoveResult(MULTIANEWARRAY_METHOD.getPrototype().getReturnType());
insn = new PlainInsn(rop, pos, objectReg, RegisterSpecList.EMPTY);
insns.add(insn);
/*
* And finally, set up for the remainder of this method to
* add an appropriate cast.
*/
opcode = ByteOps.CHECKCAST;
sources = RegisterSpecList.make(objectReg);
} else if (opcode == ByteOps.JSR) {
// JSR has no Rop instruction
hasJsr = true;
return;
} else if (opcode == ByteOps.RET) {
try {
returnAddress = (ReturnAddress) arg(0);
} catch (ClassCastException ex) {
throw new RuntimeException("Argument to RET was not a ReturnAddress", ex);
}
// RET has no Rop instruction.
return;
}
ropOpcode = jopToRopOpcode(opcode, cst);
rop = Rops.ropFor(ropOpcode, destType, sources, cst);
Insn moveResult = null;
if (dest != null && rop.isCallLike()) {
/*
* We're going to want to have a move-result in the next
* basic block.
*/
extraBlockCount++;
moveResult = new PlainInsn(Rops.opMoveResult(((CstMethodRef) cst).getPrototype().getReturnType()), pos, dest, RegisterSpecList.EMPTY);
dest = null;
} else if (dest != null && rop.canThrow()) {
/*
* We're going to want to have a move-result-pseudo in the
* next basic block.
*/
extraBlockCount++;
moveResult = new PlainInsn(Rops.opMoveResultPseudo(dest.getTypeBearer()), pos, dest, RegisterSpecList.EMPTY);
dest = null;
}
if (ropOpcode == RegOps.NEW_ARRAY) {
/*
* In the original bytecode, this was either a primitive
* array constructor "newarray" or an object array
* constructor "anewarray". In the former case, there is
* no explicit constant, and in the latter, the constant
* is for the element type and not the array type. The rop
* instruction form for both of these is supposed to be
* the resulting array type, so we initialize / alter
* "cst" here, accordingly. Conveniently enough, the rop
* opcode already gets constructed with the proper array
* type.
*/
cst = CstType.intern(rop.getResult());
} else if ((cst == null) && (sourceCount == 2)) {
TypeBearer firstType = sources.get(0).getTypeBearer();
TypeBearer lastType = sources.get(1).getTypeBearer();
if ((lastType.isConstant() || firstType.isConstant()) && advice.hasConstantOperation(rop, sources.get(0), sources.get(1))) {
if (lastType.isConstant()) {
/*
* The target architecture has an instruction that can
* build in the constant found in the second argument,
* so pull it out of the sources and just use it as a
* constant here.
*/
cst = (Constant) lastType;
sources = sources.withoutLast();
// For subtraction, change to addition and invert constant
if (rop.getOpcode() == RegOps.SUB) {
ropOpcode = RegOps.ADD;
CstInteger cstInt = (CstInteger) lastType;
cst = CstInteger.make(-cstInt.getValue());
}
} else {
/*
* The target architecture has an instruction that can
* build in the constant found in the first argument,
* so pull it out of the sources and just use it as a
* constant here.
*/
cst = (Constant) firstType;
sources = sources.withoutFirst();
}
rop = Rops.ropFor(ropOpcode, destType, sources, cst);
}
}
SwitchList cases = getAuxCases();
ArrayList<Constant> initValues = getInitValues();
boolean canThrow = rop.canThrow();
blockCanThrow |= canThrow;
if (cases != null) {
if (cases.size() == 0) {
// It's a default-only switch statement. It can happen!
insn = new PlainInsn(Rops.GOTO, pos, null, RegisterSpecList.EMPTY);
primarySuccessorIndex = 0;
} else {
IntList values = cases.getValues();
insn = new SwitchInsn(rop, pos, dest, sources, values);
primarySuccessorIndex = values.size();
}
} else if (ropOpcode == RegOps.RETURN) {
/*
* Returns get turned into the combination of a move (if
* non-void and if the return doesn't already mention
* register 0) and a goto (to the return block).
*/
if (sources.size() != 0) {
RegisterSpec source = sources.get(0);
TypeBearer type = source.getTypeBearer();
if (source.getReg() != 0) {
insns.add(new PlainInsn(Rops.opMove(type), pos, RegisterSpec.make(0, type), source));
}
}
insn = new PlainInsn(Rops.GOTO, pos, null, RegisterSpecList.EMPTY);
primarySuccessorIndex = 0;
updateReturnOp(rop, pos);
returns = true;
} else if (cst != null) {
if (canThrow) {
if (rop.getOpcode() == RegOps.INVOKE_POLYMORPHIC) {
insn = makeInvokePolymorphicInsn(rop, pos, sources, catches, cst);
} else {
insn = new ThrowingCstInsn(rop, pos, sources, catches, cst);
}
catchesUsed = true;
primarySuccessorIndex = catches.size();
} else {
insn = new PlainCstInsn(rop, pos, dest, sources, cst);
}
} else if (canThrow) {
insn = new ThrowingInsn(rop, pos, sources, catches);
catchesUsed = true;
if (opcode == ByteOps.ATHROW) {
/*
* The op athrow is the only one where it's possible
* to have non-empty successors and yet not have a
* primary successor.
*/
primarySuccessorIndex = -1;
} else {
primarySuccessorIndex = catches.size();
}
} else {
insn = new PlainInsn(rop, pos, dest, sources);
}
insns.add(insn);
if (moveResult != null) {
insns.add(moveResult);
}
/*
* If initValues is non-null, it means that the parser has
* seen a group of compatible constant initialization
* bytecodes that are applied to the current newarray. The
* action we take here is to convert these initialization
* bytecodes into a single fill-array-data ROP which lays out
* all the constant values in a table.
*/
if (initValues != null) {
extraBlockCount++;
insn = new FillArrayDataInsn(Rops.FILL_ARRAY_DATA, pos, RegisterSpecList.make(moveResult.getResult()), initValues, cst);
insns.add(insn);
}
}
use of com.android.dx.rop.cst.Constant in project J2ME-Loader by nikita36078.
the class AnnotationParser method parseConstant.
/**
* Helper for {@link #parseValue}, which parses a constant reference
* and returns the referred-to constant value.
*
* @return {@code non-null;} the parsed value
*/
private Constant parseConstant() throws IOException {
int constValueIndex = input.readUnsignedShort();
Constant value = (Constant) pool.get(constValueIndex);
if (observer != null) {
String human = (value instanceof CstString) ? ((CstString) value).toQuoted() : value.toHuman();
parsed(2, "constant_value: " + human);
}
return value;
}
use of com.android.dx.rop.cst.Constant in project J2ME-Loader by nikita36078.
the class AnnotationParser method parseElement.
/**
* Parses a {@link NameValuePair}.
*
* @return {@code non-null;} the parsed element
*/
private NameValuePair parseElement() throws IOException {
requireLength(5);
int elementNameIndex = input.readUnsignedShort();
CstString elementName = (CstString) pool.get(elementNameIndex);
if (observer != null) {
parsed(2, "element_name: " + elementName.toHuman());
parsed(0, "value: ");
changeIndent(1);
}
Constant value = parseValue();
if (observer != null) {
changeIndent(-1);
}
return new NameValuePair(elementName, value);
}
use of com.android.dx.rop.cst.Constant in project J2ME-Loader by nikita36078.
the class CfTranslator method translate0.
/**
* Performs the main act of translation. This method is separated
* from {@link #translate} just to keep things a bit simpler in
* terms of exception handling.
*
* @param context {@code non-null;} the state global to this invocation.
* @param cf {@code non-null;} the class file
* @param bytes {@code non-null;} contents of the file
* @param cfOptions options for class translation
* @param dexOptions options for dex output
* @param dexFile {@code non-null;} dex output
* @return {@code non-null;} the translated class
*/
private static ClassDefItem translate0(DxContext context, DirectClassFile cf, byte[] bytes, CfOptions cfOptions, DexOptions dexOptions, DexFile dexFile) {
context.optimizerOptions.loadOptimizeLists(cfOptions.optimizeListFile, cfOptions.dontOptimizeListFile);
// Build up a class to output.
CstType thisClass = cf.getThisClass();
int classAccessFlags = cf.getAccessFlags() & ~AccessFlags.ACC_SUPER;
CstString sourceFile = (cfOptions.positionInfo == PositionList.NONE) ? null : cf.getSourceFile();
ClassDefItem out = new ClassDefItem(thisClass, classAccessFlags, cf.getSuperclass(), cf.getInterfaces(), sourceFile);
Annotations classAnnotations = AttributeTranslator.getClassAnnotations(cf, cfOptions);
if (classAnnotations.size() != 0) {
out.setClassAnnotations(classAnnotations, dexFile);
}
FieldIdsSection fieldIdsSection = dexFile.getFieldIds();
MethodIdsSection methodIdsSection = dexFile.getMethodIds();
processFields(cf, out, dexFile);
processMethods(context, cf, cfOptions, dexOptions, out, dexFile);
// intern constant pool method, field and type references
ConstantPool constantPool = cf.getConstantPool();
int constantPoolSize = constantPool.size();
for (int i = 0; i < constantPoolSize; i++) {
Constant constant = constantPool.getOrNull(i);
if (constant instanceof CstMethodRef) {
methodIdsSection.intern((CstBaseMethodRef) constant);
} else if (constant instanceof CstInterfaceMethodRef) {
methodIdsSection.intern(((CstInterfaceMethodRef) constant).toMethodRef());
} else if (constant instanceof CstFieldRef) {
fieldIdsSection.intern((CstFieldRef) constant);
} else if (constant instanceof CstEnumRef) {
fieldIdsSection.intern(((CstEnumRef) constant).getFieldRef());
}
}
return out;
}
Aggregations