use of com.android.dx.util.IntList in project buck by facebook.
the class StdCatchBuilder method handlersFor.
/**
* Makes the {@link CatchHandlerList} for the given basic block.
*
* @param block {@code non-null;} block to get entries for
* @param addresses {@code non-null;} address objects for each block
* @return {@code non-null;} array of entries
*/
private static CatchHandlerList handlersFor(BasicBlock block, BlockAddresses addresses) {
IntList successors = block.getSuccessors();
int succSize = successors.size();
int primary = block.getPrimarySuccessor();
TypeList catches = block.getLastInsn().getCatches();
int catchSize = catches.size();
if (catchSize == 0) {
return CatchHandlerList.EMPTY;
}
if (((primary == -1) && (succSize != catchSize)) || ((primary != -1) && ((succSize != (catchSize + 1)) || (primary != successors.get(catchSize))))) {
/*
* Blocks that throw are supposed to list their primary
* successor -- if any -- last in the successors list, but
* that constraint appears to be violated here.
*/
throw new RuntimeException("shouldn't happen: weird successors list");
}
/*
* Reduce the effective catchSize if we spot a catch-all that
* isn't at the end.
*/
for (int i = 0; i < catchSize; i++) {
Type type = catches.getType(i);
if (type.equals(Type.OBJECT)) {
catchSize = i + 1;
break;
}
}
CatchHandlerList result = new CatchHandlerList(catchSize);
for (int i = 0; i < catchSize; i++) {
CstType oneType = new CstType(catches.getType(i));
CodeAddress oneHandler = addresses.getStart(successors.get(i));
result.set(i, oneType, oneHandler.getAddress());
}
result.setImmutable();
return result;
}
use of com.android.dx.util.IntList in project J2ME-Loader by nikita36078.
the class RopperMachine method run.
/**
* {@inheritDoc}
*/
@Override
public void run(Frame frame, int offset, int opcode) {
/*
* This is the stack pointer after the opcode's arguments have been
* popped.
*/
int stackPointer = maxLocals + frame.getStack().size();
// The sources have to be retrieved before super.run() gets called.
RegisterSpecList sources = getSources(opcode, stackPointer);
int sourceCount = sources.size();
super.run(frame, offset, opcode);
SourcePosition pos = method.makeSourcePosistion(offset);
RegisterSpec localTarget = getLocalTarget(opcode == ByteOps.ISTORE);
int destCount = resultCount();
RegisterSpec dest;
if (destCount == 0) {
dest = null;
switch(opcode) {
case ByteOps.POP:
case ByteOps.POP2:
{
// These simply don't appear in the rop form.
return;
}
}
} else if (localTarget != null) {
dest = localTarget;
} else if (destCount == 1) {
dest = RegisterSpec.make(stackPointer, result(0));
} else {
/*
* This clause only ever applies to the stack manipulation
* ops that have results (that is, dup* and swap but not
* pop*).
*
* What we do is first move all the source registers into
* the "temporary stack" area defined for the method, and
* then move stuff back down onto the main "stack" in the
* arrangement specified by the stack op pattern.
*
* Note: This code ends up emitting a lot of what will
* turn out to be superfluous moves (e.g., moving back and
* forth to the same local when doing a dup); however,
* that makes this code a bit easier (and goodness knows
* it doesn't need any extra complexity), and all the SSA
* stuff is going to want to deal with this sort of
* superfluous assignment anyway, so it should be a wash
* in the end.
*/
int scratchAt = ropper.getFirstTempStackReg();
RegisterSpec[] scratchRegs = new RegisterSpec[sourceCount];
for (int i = 0; i < sourceCount; i++) {
RegisterSpec src = sources.get(i);
TypeBearer type = src.getTypeBearer();
RegisterSpec scratch = src.withReg(scratchAt);
insns.add(new PlainInsn(Rops.opMove(type), pos, scratch, src));
scratchRegs[i] = scratch;
scratchAt += src.getCategory();
}
for (int pattern = getAuxInt(); pattern != 0; pattern >>= 4) {
int which = (pattern & 0x0f) - 1;
RegisterSpec scratch = scratchRegs[which];
TypeBearer type = scratch.getTypeBearer();
insns.add(new PlainInsn(Rops.opMove(type), pos, scratch.withReg(stackPointer), scratch));
stackPointer += type.getType().getCategory();
}
return;
}
TypeBearer destType = (dest != null) ? dest : Type.VOID;
Constant cst = getAuxCst();
int ropOpcode;
Rop rop;
Insn insn;
if (opcode == ByteOps.MULTIANEWARRAY) {
blockCanThrow = true;
// Add the extra instructions for handling multianewarray.
extraBlockCount = 6;
/*
* Add an array constructor for the int[] containing all the
* dimensions.
*/
RegisterSpec dimsReg = RegisterSpec.make(dest.getNextReg(), Type.INT_ARRAY);
rop = Rops.opFilledNewArray(Type.INT_ARRAY, sourceCount);
insn = new ThrowingCstInsn(rop, pos, sources, catches, CstType.INT_ARRAY);
insns.add(insn);
// Add a move-result for the new-filled-array
rop = Rops.opMoveResult(Type.INT_ARRAY);
insn = new PlainInsn(rop, pos, dimsReg, RegisterSpecList.EMPTY);
insns.add(insn);
/*
* Add a const-class instruction for the specified array
* class.
*/
/*
* Remove as many dimensions from the originally specified
* class as are given in the explicit list of dimensions,
* so as to pass the right component class to the standard
* Java library array constructor.
*/
Type componentType = ((CstType) cst).getClassType();
for (int i = 0; i < sourceCount; i++) {
componentType = componentType.getComponentType();
}
RegisterSpec classReg = RegisterSpec.make(dest.getReg(), Type.CLASS);
if (componentType.isPrimitive()) {
/*
* The component type is primitive (e.g., int as opposed
* to Integer), so we have to fetch the corresponding
* TYPE class.
*/
CstFieldRef typeField = CstFieldRef.forPrimitiveType(componentType);
insn = new ThrowingCstInsn(Rops.GET_STATIC_OBJECT, pos, RegisterSpecList.EMPTY, catches, typeField);
} else {
/*
* The component type is an object type, so just make a
* normal class reference.
*/
insn = new ThrowingCstInsn(Rops.CONST_OBJECT, pos, RegisterSpecList.EMPTY, catches, new CstType(componentType));
}
insns.add(insn);
// Add a move-result-pseudo for the get-static or const
rop = Rops.opMoveResultPseudo(classReg.getType());
insn = new PlainInsn(rop, pos, classReg, RegisterSpecList.EMPTY);
insns.add(insn);
/*
* Add a call to the "multianewarray method," that is,
* Array.newInstance(class, dims). Note: The result type
* of newInstance() is Object, which is why the last
* instruction in this sequence is a cast to the right
* type for the original instruction.
*/
RegisterSpec objectReg = RegisterSpec.make(dest.getReg(), Type.OBJECT);
insn = new ThrowingCstInsn(Rops.opInvokeStatic(MULTIANEWARRAY_METHOD.getPrototype()), pos, RegisterSpecList.make(classReg, dimsReg), catches, MULTIANEWARRAY_METHOD);
insns.add(insn);
// Add a move-result.
rop = Rops.opMoveResult(MULTIANEWARRAY_METHOD.getPrototype().getReturnType());
insn = new PlainInsn(rop, pos, objectReg, RegisterSpecList.EMPTY);
insns.add(insn);
/*
* And finally, set up for the remainder of this method to
* add an appropriate cast.
*/
opcode = ByteOps.CHECKCAST;
sources = RegisterSpecList.make(objectReg);
} else if (opcode == ByteOps.JSR) {
// JSR has no Rop instruction
hasJsr = true;
return;
} else if (opcode == ByteOps.RET) {
try {
returnAddress = (ReturnAddress) arg(0);
} catch (ClassCastException ex) {
throw new RuntimeException("Argument to RET was not a ReturnAddress", ex);
}
// RET has no Rop instruction.
return;
}
ropOpcode = jopToRopOpcode(opcode, cst);
rop = Rops.ropFor(ropOpcode, destType, sources, cst);
Insn moveResult = null;
if (dest != null && rop.isCallLike()) {
/*
* We're going to want to have a move-result in the next
* basic block.
*/
extraBlockCount++;
moveResult = new PlainInsn(Rops.opMoveResult(((CstMethodRef) cst).getPrototype().getReturnType()), pos, dest, RegisterSpecList.EMPTY);
dest = null;
} else if (dest != null && rop.canThrow()) {
/*
* We're going to want to have a move-result-pseudo in the
* next basic block.
*/
extraBlockCount++;
moveResult = new PlainInsn(Rops.opMoveResultPseudo(dest.getTypeBearer()), pos, dest, RegisterSpecList.EMPTY);
dest = null;
}
if (ropOpcode == RegOps.NEW_ARRAY) {
/*
* In the original bytecode, this was either a primitive
* array constructor "newarray" or an object array
* constructor "anewarray". In the former case, there is
* no explicit constant, and in the latter, the constant
* is for the element type and not the array type. The rop
* instruction form for both of these is supposed to be
* the resulting array type, so we initialize / alter
* "cst" here, accordingly. Conveniently enough, the rop
* opcode already gets constructed with the proper array
* type.
*/
cst = CstType.intern(rop.getResult());
} else if ((cst == null) && (sourceCount == 2)) {
TypeBearer firstType = sources.get(0).getTypeBearer();
TypeBearer lastType = sources.get(1).getTypeBearer();
if ((lastType.isConstant() || firstType.isConstant()) && advice.hasConstantOperation(rop, sources.get(0), sources.get(1))) {
if (lastType.isConstant()) {
/*
* The target architecture has an instruction that can
* build in the constant found in the second argument,
* so pull it out of the sources and just use it as a
* constant here.
*/
cst = (Constant) lastType;
sources = sources.withoutLast();
// For subtraction, change to addition and invert constant
if (rop.getOpcode() == RegOps.SUB) {
ropOpcode = RegOps.ADD;
CstInteger cstInt = (CstInteger) lastType;
cst = CstInteger.make(-cstInt.getValue());
}
} else {
/*
* The target architecture has an instruction that can
* build in the constant found in the first argument,
* so pull it out of the sources and just use it as a
* constant here.
*/
cst = (Constant) firstType;
sources = sources.withoutFirst();
}
rop = Rops.ropFor(ropOpcode, destType, sources, cst);
}
}
SwitchList cases = getAuxCases();
ArrayList<Constant> initValues = getInitValues();
boolean canThrow = rop.canThrow();
blockCanThrow |= canThrow;
if (cases != null) {
if (cases.size() == 0) {
// It's a default-only switch statement. It can happen!
insn = new PlainInsn(Rops.GOTO, pos, null, RegisterSpecList.EMPTY);
primarySuccessorIndex = 0;
} else {
IntList values = cases.getValues();
insn = new SwitchInsn(rop, pos, dest, sources, values);
primarySuccessorIndex = values.size();
}
} else if (ropOpcode == RegOps.RETURN) {
/*
* Returns get turned into the combination of a move (if
* non-void and if the return doesn't already mention
* register 0) and a goto (to the return block).
*/
if (sources.size() != 0) {
RegisterSpec source = sources.get(0);
TypeBearer type = source.getTypeBearer();
if (source.getReg() != 0) {
insns.add(new PlainInsn(Rops.opMove(type), pos, RegisterSpec.make(0, type), source));
}
}
insn = new PlainInsn(Rops.GOTO, pos, null, RegisterSpecList.EMPTY);
primarySuccessorIndex = 0;
updateReturnOp(rop, pos);
returns = true;
} else if (cst != null) {
if (canThrow) {
if (rop.getOpcode() == RegOps.INVOKE_POLYMORPHIC) {
insn = makeInvokePolymorphicInsn(rop, pos, sources, catches, cst);
} else {
insn = new ThrowingCstInsn(rop, pos, sources, catches, cst);
}
catchesUsed = true;
primarySuccessorIndex = catches.size();
} else {
insn = new PlainCstInsn(rop, pos, dest, sources, cst);
}
} else if (canThrow) {
insn = new ThrowingInsn(rop, pos, sources, catches);
catchesUsed = true;
if (opcode == ByteOps.ATHROW) {
/*
* The op athrow is the only one where it's possible
* to have non-empty successors and yet not have a
* primary successor.
*/
primarySuccessorIndex = -1;
} else {
primarySuccessorIndex = catches.size();
}
} else {
insn = new PlainInsn(rop, pos, dest, sources);
}
insns.add(insn);
if (moveResult != null) {
insns.add(moveResult);
}
/*
* If initValues is non-null, it means that the parser has
* seen a group of compatible constant initialization
* bytecodes that are applied to the current newarray. The
* action we take here is to convert these initialization
* bytecodes into a single fill-array-data ROP which lays out
* all the constant values in a table.
*/
if (initValues != null) {
extraBlockCount++;
insn = new FillArrayDataInsn(Rops.FILL_ARRAY_DATA, pos, RegisterSpecList.make(moveResult.getResult()), initValues, cst);
insns.add(insn);
}
}
use of com.android.dx.util.IntList in project J2ME-Loader by nikita36078.
the class BasicBlocker method getBlockList.
/**
* Extracts the list of basic blocks from the bit sets.
*
* @return {@code non-null;} the list of basic blocks
*/
private ByteBlockList getBlockList() {
BytecodeArray bytes = method.getCode();
ByteBlock[] bbs = new ByteBlock[bytes.size()];
int count = 0;
for (int at = 0, next; ; /*at*/
at = next) {
next = Bits.findFirst(blockSet, at + 1);
if (next < 0) {
break;
}
if (Bits.get(liveSet, at)) {
/*
* Search backward for the branch or throwing
* instruction at the end of this block, if any. If
* there isn't any, then "next" is the sole target.
*/
IntList targets = null;
int targetsAt = -1;
ByteCatchList blockCatches;
for (int i = next - 1; i >= at; i--) {
targets = targetLists[i];
if (targets != null) {
targetsAt = i;
break;
}
}
if (targets == null) {
targets = IntList.makeImmutable(next);
blockCatches = ByteCatchList.EMPTY;
} else {
blockCatches = catchLists[targetsAt];
if (blockCatches == null) {
blockCatches = ByteCatchList.EMPTY;
}
}
bbs[count] = new ByteBlock(at, at, next, targets, blockCatches);
count++;
}
}
ByteBlockList result = new ByteBlockList(count);
for (int i = 0; i < count; i++) {
result.set(i, bbs[i]);
}
return result;
}
use of com.android.dx.util.IntList in project J2ME-Loader by nikita36078.
the class Frame method makeNewSubroutineStartFrame.
/**
* Makes a frame for a subroutine start block, given that this is the
* ending frame of one of the subroutine's calling blocks. Subroutine
* calls may be nested and thus may have nested locals state, so we
* start with an initial state as seen by the subroutine, but keep track
* of the individual locals states that will be expected when the individual
* subroutine calls return.
*
* @param subLabel label of subroutine start block
* @param callerLabel {@code >=0;} label of the caller block where this frame
* came from.
* @return a new instance to begin a called subroutine.
*/
public Frame makeNewSubroutineStartFrame(int subLabel, int callerLabel) {
IntList newSubroutines = subroutines.mutableCopy();
newSubroutines.add(subLabel);
Frame newFrame = new Frame(locals.getPrimary(), stack, IntList.makeImmutable(subLabel));
return newFrame.mergeWithSubroutineCaller(this, subLabel, callerLabel);
}
use of com.android.dx.util.IntList in project J2ME-Loader by nikita36078.
the class Frame method mergeWithSubroutineCaller.
/**
* Merges this frame with the frame of a subroutine caller at
* {@code predLabel}. Only called on the frame at the first
* block of a subroutine.
*
* @param other {@code non-null;} another frame
* @param subLabel label of subroutine start block
* @param predLabel label of calling block
* @return {@code non-null;} the result of merging the two frames
*/
public Frame mergeWithSubroutineCaller(Frame other, int subLabel, int predLabel) {
LocalsArray resultLocals;
ExecutionStack resultStack;
resultLocals = getLocals().mergeWithSubroutineCaller(other.getLocals(), predLabel);
resultStack = getStack().merge(other.getStack());
IntList newOtherSubroutines = other.subroutines.mutableCopy();
newOtherSubroutines.add(subLabel);
newOtherSubroutines.setImmutable();
if ((resultLocals == getLocals()) && (resultStack == getStack()) && subroutines.equals(newOtherSubroutines)) {
return this;
}
IntList resultSubroutines;
if (subroutines.equals(newOtherSubroutines)) {
resultSubroutines = subroutines;
} else {
/*
* The new subroutines list should be the deepest of the two
* lists being merged, but the postfix of the resultant list
* must be equal to the shorter list.
*/
IntList nonResultSubroutines;
if (subroutines.size() > newOtherSubroutines.size()) {
resultSubroutines = subroutines;
nonResultSubroutines = newOtherSubroutines;
} else {
resultSubroutines = newOtherSubroutines;
nonResultSubroutines = subroutines;
}
int szResult = resultSubroutines.size();
int szNonResult = nonResultSubroutines.size();
for (int i = szNonResult - 1; i >= 0; i--) {
if (nonResultSubroutines.get(i) != resultSubroutines.get(i + (szResult - szNonResult))) {
throw new RuntimeException("Incompatible merged subroutines");
}
}
}
return new Frame(resultLocals, resultStack, resultSubroutines);
}
Aggregations