use of com.github.javaparser.symbolsolver.model.resolution.TypeSolver in project javaparser by javaparser.
the class ReflectionMethodResolutionLogic method solveMethod.
static SymbolReference<ResolvedMethodDeclaration> solveMethod(String name, List<ResolvedType> parameterTypes, boolean staticOnly, TypeSolver typeSolver, ResolvedReferenceTypeDeclaration scopeType, Class clazz) {
List<ResolvedMethodDeclaration> methods = new ArrayList<>();
Predicate<Method> staticOnlyCheck = m -> !staticOnly || (staticOnly && Modifier.isStatic(m.getModifiers()));
for (Method method : clazz.getMethods()) {
if (method.isBridge() || method.isSynthetic() || !method.getName().equals(name) || !staticOnlyCheck.test(method))
continue;
ResolvedMethodDeclaration methodDeclaration = new ReflectionMethodDeclaration(method, typeSolver);
methods.add(methodDeclaration);
}
for (ResolvedReferenceType ancestor : scopeType.getAncestors()) {
SymbolReference<ResolvedMethodDeclaration> ref = MethodResolutionLogic.solveMethodInType(ancestor.getTypeDeclaration(), name, parameterTypes, staticOnly, typeSolver);
if (ref.isSolved()) {
methods.add(ref.getCorrespondingDeclaration());
}
}
if (scopeType.getAncestors().isEmpty()) {
ReferenceTypeImpl objectClass = new ReferenceTypeImpl(new ReflectionClassDeclaration(Object.class, typeSolver), typeSolver);
SymbolReference<ResolvedMethodDeclaration> ref = MethodResolutionLogic.solveMethodInType(objectClass.getTypeDeclaration(), name, parameterTypes, staticOnly, typeSolver);
if (ref.isSolved()) {
methods.add(ref.getCorrespondingDeclaration());
}
}
return MethodResolutionLogic.findMostApplicable(methods, name, parameterTypes, typeSolver);
}
use of com.github.javaparser.symbolsolver.model.resolution.TypeSolver in project javaparser by javaparser.
the class BoundSet method deriveImpliedBounds.
public BoundSet deriveImpliedBounds(TypeSolver typeSolver) {
// As bound sets are constructed and grown during inference, it is possible that new bounds can be inferred
// based on the assertions of the original bounds. The process of incorporation identifies these new bounds
// and adds them to the bound set.
//
// Incorporation can happen in two scenarios. One scenario is that the bound set contains complementary pairs
// of bounds; this implies new constraint formulas, as specified in §18.3.1. The other scenario is that the
// bound set contains a bound involving capture conversion; this implies new bounds and may imply new
// constraint formulas, as specified in §18.3.2. In both scenarios, any new constraint formulas are reduced,
// and any new bounds are added to the bound set. This may trigger further incorporation; ultimately, the set
// will reach a fixed point and no further bounds can be inferred.
//
// If incorporation of a bound set has reached a fixed point, and the set does not contain the bound false,
// then the bound set has the following properties:
//
// - For each combination of a proper lower bound L and a proper upper bound U of an inference variable, L <: U.
//
// - If every inference variable mentioned by a bound has an instantiation, the bound is satisfied by the
// corresponding substitution.
//
// - Given a dependency α = β, every bound of α matches a bound of β, and vice versa.
//
// - Given a dependency α <: β, every lower bound of α is a lower bound of β, and every upper bound of β is an
// upper bound of α.
ConstraintFormulaSet newConstraintsSet = ConstraintFormulaSet.empty();
// SECTION Complementary Pairs of Bounds
// (In this section, S and T are inference variables or types, and U is a proper type. For conciseness, a bound
// of the form α = T may also match a bound of the form T = α.)
//
// When a bound set contains a pair of bounds that match one of the following rules, a new constraint formula
// is implied:
//
// - α = S and α = T imply ‹S = T›
newConstraintsSet = forEachPairSameAs((a, b, currentConstraintSet) -> {
if (areSameTypeInference(a.getS(), b.getS())) {
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSameAsType(a.getT(), b.getT()));
}
if (areSameTypeInference(a.getS(), b.getT())) {
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSameAsType(a.getS(), b.getT()));
}
if (areSameTypeInference(a.getT(), b.getS())) {
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSameAsType(a.getT(), b.getS()));
}
if (areSameTypeInference(a.getT(), b.getT())) {
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSameAsType(a.getS(), b.getS()));
}
return currentConstraintSet;
}, newConstraintsSet);
// - α = S and α <: T imply ‹S <: T›
newConstraintsSet = forEachPairSameAndSubtype((a, b, currentConstraintSet) -> {
if (areSameTypeInference(a.getS(), b.getS())) {
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSubtypeOfType(typeSolver, a.getT(), b.getT()));
}
if (areSameTypeInference(a.getT(), b.getS())) {
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSubtypeOfType(typeSolver, a.getS(), b.getT()));
}
return currentConstraintSet;
}, newConstraintsSet);
// - α = S and T <: α imply ‹T <: S›
newConstraintsSet = forEachPairSameAndSubtype((a, b, currentConstraintSet) -> {
if (areSameTypeInference(a.getS(), b.getT())) {
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSubtypeOfType(typeSolver, b.getS(), a.getT()));
}
if (areSameTypeInference(a.getT(), b.getT())) {
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSubtypeOfType(typeSolver, b.getS(), a.getS()));
}
return currentConstraintSet;
}, newConstraintsSet);
// - S <: α and α <: T imply ‹S <: T›
newConstraintsSet = forEachPairSubtypeAndSubtype((a, b, currentConstraintSet) -> {
if (areSameTypeInference(a.getT(), b.getS())) {
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSubtypeOfType(typeSolver, b.getS(), a.getT()));
}
return currentConstraintSet;
}, newConstraintsSet);
// - α = U and S = T imply ‹S[α:=U] = T[α:=U]›
newConstraintsSet = forEachPairSameAs((a, b, currentConstraintSet) -> {
if (isInferenceVariable(a.getS()) && isProperType(a.getT())) {
InferenceVariable alpha = (InferenceVariable) a.getS();
ResolvedType U = a.getT();
ResolvedType S = b.getS();
ResolvedType T = b.getT();
Substitution sub = Substitution.empty().withPair(alpha.getTypeParameterDeclaration(), U);
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSameAsType(sub.apply(S), sub.apply(T)));
}
if (isInferenceVariable(a.getT()) && isProperType(a.getS())) {
InferenceVariable alpha = (InferenceVariable) a.getT();
ResolvedType U = a.getS();
ResolvedType S = b.getS();
ResolvedType T = b.getT();
Substitution sub = Substitution.empty().withPair(alpha.getTypeParameterDeclaration(), U);
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSameAsType(sub.apply(S), sub.apply(T)));
}
if (isInferenceVariable(b.getS()) && isProperType(b.getT())) {
InferenceVariable alpha = (InferenceVariable) b.getS();
ResolvedType U = b.getT();
ResolvedType S = a.getS();
ResolvedType T = a.getT();
Substitution sub = Substitution.empty().withPair(alpha.getTypeParameterDeclaration(), U);
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSameAsType(sub.apply(S), sub.apply(T)));
}
if (isInferenceVariable(b.getT()) && isProperType(b.getS())) {
InferenceVariable alpha = (InferenceVariable) b.getT();
ResolvedType U = b.getS();
ResolvedType S = a.getS();
ResolvedType T = a.getT();
Substitution sub = Substitution.empty().withPair(alpha.getTypeParameterDeclaration(), U);
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSameAsType(sub.apply(S), sub.apply(T)));
}
return currentConstraintSet;
}, newConstraintsSet);
// - α = U and S <: T imply ‹S[α:=U] <: T[α:=U]›
newConstraintsSet = forEachPairSameAndSubtype((a, b, currentConstraintSet) -> {
if (isInferenceVariable(a.getS()) && isProperType(a.getT())) {
InferenceVariable alpha = (InferenceVariable) a.getS();
ResolvedType U = a.getT();
ResolvedType S = b.getS();
ResolvedType T = b.getT();
Substitution sub = Substitution.empty().withPair(alpha.getTypeParameterDeclaration(), U);
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSubtypeOfType(typeSolver, sub.apply(S), sub.apply(T)));
}
if (isInferenceVariable(a.getT()) && isProperType(a.getS())) {
InferenceVariable alpha = (InferenceVariable) a.getT();
ResolvedType U = a.getS();
ResolvedType S = b.getS();
ResolvedType T = b.getT();
Substitution sub = Substitution.empty().withPair(alpha.getTypeParameterDeclaration(), U);
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSubtypeOfType(typeSolver, sub.apply(S), sub.apply(T)));
}
return currentConstraintSet;
}, newConstraintsSet);
// When a bound set contains a pair of bounds α <: S and α <: T, and there exists a supertype of S of the
// form G<S1, ..., Sn> and a supertype of T of the form G<T1, ..., Tn> (for some generic class or interface, G),
// then for all i (1 ≤ i ≤ n), if Si and Ti are types (not wildcards), the constraint formula ‹Si = Ti› is
// implied.
newConstraintsSet = forEachPairSubtypeAndSubtype((a, b, currentConstraintSet) -> {
if (isInferenceVariable(a.getS()) && isInferenceVariable(b.getS())) {
if (a.getT().isReferenceType() && b.getT().isReferenceType()) {
ResolvedReferenceType S = a.getT().asReferenceType();
ResolvedReferenceType T = b.getT().asReferenceType();
List<Pair<ResolvedReferenceType, ResolvedReferenceType>> pairs = findPairsOfCommonAncestors(S, T);
for (Pair<ResolvedReferenceType, ResolvedReferenceType> pair : pairs) {
for (int i = 0; i < Math.min(pair.a.typeParametersValues().size(), pair.b.typeParametersValues().size()); i++) {
ResolvedType si = pair.a.typeParametersValues().get(i);
ResolvedType ti = pair.b.typeParametersValues().get(i);
if (!si.isWildcard() && !ti.isWildcard()) {
currentConstraintSet = currentConstraintSet.withConstraint(new TypeSameAsType(si, ti));
}
}
}
}
}
return currentConstraintSet;
}, newConstraintsSet);
for (Bound b : this.bounds.stream().filter(b -> b instanceof CapturesBound).collect(Collectors.toList())) {
CapturesBound capturesBound = (CapturesBound) b;
throw new UnsupportedOperationException();
// Let P1, ..., Pn represent the type parameters of G and let B1, ..., Bn represent the bounds of these type
// parameters. Let θ represent the substitution [P1:=α1, ..., Pn:=αn]. Let R be a type that is not an inference
// variable (but is not necessarily a proper type).
//
// A set of bounds on α1, ..., αn is implied, constructed from the declared bounds of P1, ..., Pn as specified
// in §18.1.3.
//
// In addition, for all i (1 ≤ i ≤ n):
//
// - If Ai is not a wildcard, then the bound αi = Ai is implied.
//
// - If Ai is a wildcard of the form ?:
//
// - αi = R implies the bound false
//
// - αi <: R implies the constraint formula ‹Bi θ <: R›
//
// - R <: αi implies the bound false
//
// - If Ai is a wildcard of the form ? extends T:
//
// - αi = R implies the bound false
//
// - If Bi is Object, then αi <: R implies the constraint formula ‹T <: R›
//
// - If T is Object, then αi <: R implies the constraint formula ‹Bi θ <: R›
//
// - R <: αi implies the bound false
//
// - If Ai is a wildcard of the form ? super T:
//
// - αi = R implies the bound false
//
// - αi <: R implies the constraint formula ‹Bi θ <: R›
//
// - R <: αi implies the constraint formula ‹R <: T›
}
if (newConstraintsSet.isEmpty()) {
return this;
} else {
BoundSet newBounds = newConstraintsSet.reduce(typeSolver);
if (newBounds.isEmpty()) {
return this;
}
return this.incorporate(newBounds, typeSolver);
}
}
use of com.github.javaparser.symbolsolver.model.resolution.TypeSolver in project javaparser by javaparser.
the class BoundSet method performResolution.
/**
* Examines the bounds on an inference variable and determines an instantiation that is compatible with those
* bounds. It also decides the order in which interdependent inference variables are to be resolved.
*/
public Optional<InstantiationSet> performResolution(List<InferenceVariable> variablesToResolve, TypeSolver typeSolver) {
if (this.containsFalse()) {
return Optional.empty();
}
List<VariableDependency> dependencies = new LinkedList<>();
for (Bound b : bounds) {
if (b instanceof CapturesBound) {
throw new UnsupportedOperationException();
}
}
for (Bound b : bounds) {
if (b instanceof CapturesBound) {
throw new UnsupportedOperationException();
}
}
for (int i = 0; i < dependencies.size(); i++) {
VariableDependency di = dependencies.get(i);
for (int j = i + 1; j < dependencies.size(); j++) {
VariableDependency dj = dependencies.get(j);
if (di.dependedOn.equals(dj.depending)) {
dependencies.add(new VariableDependency(di.getDepending(), dj.getDependedOn()));
}
}
}
for (InferenceVariable v : allInferenceVariables()) {
dependencies.add(new VariableDependency(v, v));
}
// Given a set of inference variables to resolve, let V be the union of this set and all variables upon which
// the resolution of at least one variable in this set depends.
Set<InferenceVariable> V = new HashSet<>();
V.addAll(variablesToResolve);
for (VariableDependency dependency : dependencies) {
if (variablesToResolve.contains(dependency.depending)) {
V.add(dependency.dependedOn);
}
}
// If every variable in V has an instantiation, then resolution succeeds and this procedure terminates.
boolean ok = true;
for (InferenceVariable v : V) {
if (!hasInstantiationFor(v)) {
ok = false;
}
}
if (ok) {
InstantiationSet instantiationSet = InstantiationSet.empty();
for (InferenceVariable v : V) {
instantiationSet = instantiationSet.withInstantiation(getInstantiationFor(v));
}
return Optional.of(instantiationSet);
}
// Otherwise, let { α1, ..., αn } be a non-empty subset of uninstantiated variables in V such that i)
// for all i (1 ≤ i ≤ n), if αi depends on the resolution of a variable β, then either β has an instantiation
// or there is some j such that β = αj; and ii) there exists no non-empty proper subset of { α1, ..., αn }
// with this property.
Set<InferenceVariable> uninstantiatedPortionOfV = new HashSet<>();
for (InferenceVariable v : V) {
if (!hasInstantiationFor(v)) {
uninstantiatedPortionOfV.add(v);
}
}
for (Set<InferenceVariable> alphas : allSetsWithProperty(uninstantiatedPortionOfV, dependencies)) {
// Resolution proceeds by generating an instantiation for each of α1, ..., αn based on the
// bounds in the bound set:
boolean hasSomeCaptureForAlphas = alphas.stream().anyMatch(alphaI -> appearInLeftPartOfCapture(alphaI));
if (!hasSomeCaptureForAlphas) {
BoundSet newBounds = BoundSet.empty();
for (InferenceVariable alphaI : alphas) {
Set<ResolvedType> properLowerBounds = bounds.stream().filter(b -> b.isProperLowerBoundFor(alphaI).isPresent()).map(b -> b.isProperLowerBoundFor(alphaI).get().getProperType()).collect(Collectors.toSet());
ResolvedType Ti = null;
if (properLowerBounds.size() > 0) {
Ti = leastUpperBound(properLowerBounds);
}
// - Otherwise, if the bound set contains throws αi, and the proper upper bounds of αi are, at most,
// Exception, Throwable, and Object, then Ti = RuntimeException.
boolean throwsBound = bounds.stream().anyMatch(b -> b.isThrowsBoundOn(alphaI));
if (Ti == null && throwsBound && properUpperBoundsAreAtMostExceptionThrowableAndObject(alphaI)) {
Ti = new ReferenceTypeImpl(typeSolver.solveType(RuntimeException.class.getCanonicalName()), typeSolver);
}
if (Ti == null) {
Set<ResolvedType> properUpperBounds = bounds.stream().filter(b -> b.isProperUpperBoundFor(alphaI).isPresent()).map(b -> b.isProperUpperBoundFor(alphaI).get().getProperType()).collect(Collectors.toSet());
if (properUpperBounds.size() == 0) {
throw new IllegalStateException();
}
Ti = glb(properUpperBounds);
}
newBounds = newBounds.withBound(new SameAsBound(alphaI, Ti));
}
// The bounds α1 = T1, ..., αn = Tn are incorporated with the current bound set.
BoundSet incorporatedBoundSet = this.incorporate(newBounds, typeSolver);
if (!incorporatedBoundSet.containsFalse()) {
return incorporatedBoundSet.performResolution(variablesToResolve, typeSolver);
}
throw new UnsupportedOperationException();
} else // - If the bound set contains a bound of the form G<..., αi, ...> = capture(G<...>) for some i (1 ≤ i ≤ n), or;
{
throw new UnsupportedOperationException();
}
}
return Optional.empty();
}
use of com.github.javaparser.symbolsolver.model.resolution.TypeSolver in project javaparser by javaparser.
the class ReflectionClassDeclaration method solveMethod.
@Deprecated
public SymbolReference<ResolvedMethodDeclaration> solveMethod(String name, List<ResolvedType> argumentsTypes, boolean staticOnly) {
List<ResolvedMethodDeclaration> methods = new ArrayList<>();
Predicate<Method> staticFilter = m -> !staticOnly || (staticOnly && Modifier.isStatic(m.getModifiers()));
for (Method method : Arrays.stream(clazz.getDeclaredMethods()).filter((m) -> m.getName().equals(name)).filter(staticFilter).sorted(new MethodComparator()).collect(Collectors.toList())) {
if (method.isBridge() || method.isSynthetic())
continue;
ResolvedMethodDeclaration methodDeclaration = new ReflectionMethodDeclaration(method, typeSolver);
methods.add(methodDeclaration);
}
if (getSuperClass() != null) {
ResolvedClassDeclaration superClass = (ResolvedClassDeclaration) getSuperClass().getTypeDeclaration();
SymbolReference<ResolvedMethodDeclaration> ref = MethodResolutionLogic.solveMethodInType(superClass, name, argumentsTypes, staticOnly, typeSolver);
if (ref.isSolved()) {
methods.add(ref.getCorrespondingDeclaration());
}
}
for (ResolvedReferenceType interfaceDeclaration : getInterfaces()) {
SymbolReference<ResolvedMethodDeclaration> ref = MethodResolutionLogic.solveMethodInType(interfaceDeclaration.getTypeDeclaration(), name, argumentsTypes, staticOnly, typeSolver);
if (ref.isSolved()) {
methods.add(ref.getCorrespondingDeclaration());
}
}
return MethodResolutionLogic.findMostApplicable(methods, name, argumentsTypes, typeSolver);
}
use of com.github.javaparser.symbolsolver.model.resolution.TypeSolver in project javaparser by javaparser.
the class ReflectionFactory method typeUsageFor.
public static ResolvedType typeUsageFor(java.lang.reflect.Type type, TypeSolver typeSolver) {
if (type instanceof java.lang.reflect.TypeVariable) {
java.lang.reflect.TypeVariable<?> tv = (java.lang.reflect.TypeVariable<?>) type;
boolean declaredOnClass = tv.getGenericDeclaration() instanceof java.lang.reflect.Type;
ResolvedTypeParameterDeclaration typeParameter = new ReflectionTypeParameter(tv, declaredOnClass, typeSolver);
return new ResolvedTypeVariable(typeParameter);
} else if (type instanceof ParameterizedType) {
ParameterizedType pt = (ParameterizedType) type;
ResolvedReferenceType rawType = typeUsageFor(pt.getRawType(), typeSolver).asReferenceType();
List<java.lang.reflect.Type> actualTypes = new ArrayList<>();
actualTypes.addAll(Arrays.asList(pt.getActualTypeArguments()));
// we consume the actual types
rawType = rawType.transformTypeParameters(tp -> typeUsageFor(actualTypes.remove(0), typeSolver)).asReferenceType();
return rawType;
} else if (type instanceof Class) {
Class<?> c = (Class<?>) type;
if (c.isPrimitive()) {
if (c.getName().equals(Void.TYPE.getName())) {
return ResolvedVoidType.INSTANCE;
} else {
return ResolvedPrimitiveType.byName(c.getName());
}
} else if (c.isArray()) {
return new ResolvedArrayType(typeUsageFor(c.getComponentType(), typeSolver));
} else {
return new ReferenceTypeImpl(typeDeclarationFor(c, typeSolver), typeSolver);
}
} else if (type instanceof GenericArrayType) {
GenericArrayType genericArrayType = (GenericArrayType) type;
return new ResolvedArrayType(typeUsageFor(genericArrayType.getGenericComponentType(), typeSolver));
} else if (type instanceof WildcardType) {
WildcardType wildcardType = (WildcardType) type;
if (wildcardType.getLowerBounds().length > 0 && wildcardType.getUpperBounds().length > 0) {
if (wildcardType.getUpperBounds().length == 1 && wildcardType.getUpperBounds()[0].getTypeName().equals("java.lang.Object")) {
// ok, it does not matter
}
}
if (wildcardType.getLowerBounds().length > 0) {
if (wildcardType.getLowerBounds().length > 1) {
throw new UnsupportedOperationException();
}
return ResolvedWildcard.superBound(typeUsageFor(wildcardType.getLowerBounds()[0], typeSolver));
}
if (wildcardType.getUpperBounds().length > 0) {
if (wildcardType.getUpperBounds().length > 1) {
throw new UnsupportedOperationException();
}
return ResolvedWildcard.extendsBound(typeUsageFor(wildcardType.getUpperBounds()[0], typeSolver));
}
return ResolvedWildcard.UNBOUNDED;
} else {
throw new UnsupportedOperationException(type.getClass().getCanonicalName() + " " + type);
}
}
Aggregations