Search in sources :

Example 66 with ECFieldElement

use of com.github.zhenwei.core.math.ec.ECFieldElement in project LinLong-Java by zhenwei1108.

the class SecP256K1Point method add.

// B.3 pg 62
public ECPoint add(ECPoint b) {
    if (this.isInfinity()) {
        return b;
    }
    if (b.isInfinity()) {
        return this;
    }
    if (this == b) {
        return twice();
    }
    ECCurve curve = this.getCurve();
    SecP256K1FieldElement X1 = (SecP256K1FieldElement) this.x, Y1 = (SecP256K1FieldElement) this.y;
    SecP256K1FieldElement X2 = (SecP256K1FieldElement) b.getXCoord(), Y2 = (SecP256K1FieldElement) b.getYCoord();
    SecP256K1FieldElement Z1 = (SecP256K1FieldElement) this.zs[0];
    SecP256K1FieldElement Z2 = (SecP256K1FieldElement) b.getZCoord(0);
    int c;
    int[] tt1 = Nat256.createExt();
    int[] t2 = Nat256.create();
    int[] t3 = Nat256.create();
    int[] t4 = Nat256.create();
    boolean Z1IsOne = Z1.isOne();
    int[] U2, S2;
    if (Z1IsOne) {
        U2 = X2.x;
        S2 = Y2.x;
    } else {
        S2 = t3;
        SecP256K1Field.square(Z1.x, S2);
        U2 = t2;
        SecP256K1Field.multiply(S2, X2.x, U2);
        SecP256K1Field.multiply(S2, Z1.x, S2);
        SecP256K1Field.multiply(S2, Y2.x, S2);
    }
    boolean Z2IsOne = Z2.isOne();
    int[] U1, S1;
    if (Z2IsOne) {
        U1 = X1.x;
        S1 = Y1.x;
    } else {
        S1 = t4;
        SecP256K1Field.square(Z2.x, S1);
        U1 = tt1;
        SecP256K1Field.multiply(S1, X1.x, U1);
        SecP256K1Field.multiply(S1, Z2.x, S1);
        SecP256K1Field.multiply(S1, Y1.x, S1);
    }
    int[] H = Nat256.create();
    SecP256K1Field.subtract(U1, U2, H);
    int[] R = t2;
    SecP256K1Field.subtract(S1, S2, R);
    // Check if b == this or b == -this
    if (Nat256.isZero(H)) {
        if (Nat256.isZero(R)) {
            // this == b, i.e. this must be doubled
            return this.twice();
        }
        // this == -b, i.e. the result is the point at infinity
        return curve.getInfinity();
    }
    int[] HSquared = t3;
    SecP256K1Field.square(H, HSquared);
    int[] G = Nat256.create();
    SecP256K1Field.multiply(HSquared, H, G);
    int[] V = t3;
    SecP256K1Field.multiply(HSquared, U1, V);
    SecP256K1Field.negate(G, G);
    Nat256.mul(S1, G, tt1);
    c = Nat256.addBothTo(V, V, G);
    SecP256K1Field.reduce32(c, G);
    SecP256K1FieldElement X3 = new SecP256K1FieldElement(t4);
    SecP256K1Field.square(R, X3.x);
    SecP256K1Field.subtract(X3.x, G, X3.x);
    SecP256K1FieldElement Y3 = new SecP256K1FieldElement(G);
    SecP256K1Field.subtract(V, X3.x, Y3.x);
    SecP256K1Field.multiplyAddToExt(Y3.x, R, tt1);
    SecP256K1Field.reduce(tt1, Y3.x);
    SecP256K1FieldElement Z3 = new SecP256K1FieldElement(H);
    if (!Z1IsOne) {
        SecP256K1Field.multiply(Z3.x, Z1.x, Z3.x);
    }
    if (!Z2IsOne) {
        SecP256K1Field.multiply(Z3.x, Z2.x, Z3.x);
    }
    ECFieldElement[] zs = new ECFieldElement[] { Z3 };
    return new SecP256K1Point(curve, X3, Y3, zs);
}
Also used : ECCurve(com.github.zhenwei.core.math.ec.ECCurve) ECFieldElement(com.github.zhenwei.core.math.ec.ECFieldElement) ECPoint(com.github.zhenwei.core.math.ec.ECPoint)

Example 67 with ECFieldElement

use of com.github.zhenwei.core.math.ec.ECFieldElement in project LinLong-Java by zhenwei1108.

the class SecP160K1Point method add.

// B.3 pg 62
public ECPoint add(ECPoint b) {
    if (this.isInfinity()) {
        return b;
    }
    if (b.isInfinity()) {
        return this;
    }
    if (this == b) {
        return twice();
    }
    ECCurve curve = this.getCurve();
    SecP160R2FieldElement X1 = (SecP160R2FieldElement) this.x, Y1 = (SecP160R2FieldElement) this.y;
    SecP160R2FieldElement X2 = (SecP160R2FieldElement) b.getXCoord(), Y2 = (SecP160R2FieldElement) b.getYCoord();
    SecP160R2FieldElement Z1 = (SecP160R2FieldElement) this.zs[0];
    SecP160R2FieldElement Z2 = (SecP160R2FieldElement) b.getZCoord(0);
    int c;
    int[] tt1 = Nat160.createExt();
    int[] t2 = Nat160.create();
    int[] t3 = Nat160.create();
    int[] t4 = Nat160.create();
    boolean Z1IsOne = Z1.isOne();
    int[] U2, S2;
    if (Z1IsOne) {
        U2 = X2.x;
        S2 = Y2.x;
    } else {
        S2 = t3;
        SecP160R2Field.square(Z1.x, S2);
        U2 = t2;
        SecP160R2Field.multiply(S2, X2.x, U2);
        SecP160R2Field.multiply(S2, Z1.x, S2);
        SecP160R2Field.multiply(S2, Y2.x, S2);
    }
    boolean Z2IsOne = Z2.isOne();
    int[] U1, S1;
    if (Z2IsOne) {
        U1 = X1.x;
        S1 = Y1.x;
    } else {
        S1 = t4;
        SecP160R2Field.square(Z2.x, S1);
        U1 = tt1;
        SecP160R2Field.multiply(S1, X1.x, U1);
        SecP160R2Field.multiply(S1, Z2.x, S1);
        SecP160R2Field.multiply(S1, Y1.x, S1);
    }
    int[] H = Nat160.create();
    SecP160R2Field.subtract(U1, U2, H);
    int[] R = t2;
    SecP160R2Field.subtract(S1, S2, R);
    // Check if b == this or b == -this
    if (Nat160.isZero(H)) {
        if (Nat160.isZero(R)) {
            // this == b, i.e. this must be doubled
            return this.twice();
        }
        // this == -b, i.e. the result is the point at infinity
        return curve.getInfinity();
    }
    int[] HSquared = t3;
    SecP160R2Field.square(H, HSquared);
    int[] G = Nat160.create();
    SecP160R2Field.multiply(HSquared, H, G);
    int[] V = t3;
    SecP160R2Field.multiply(HSquared, U1, V);
    SecP160R2Field.negate(G, G);
    Nat160.mul(S1, G, tt1);
    c = Nat160.addBothTo(V, V, G);
    SecP160R2Field.reduce32(c, G);
    SecP160R2FieldElement X3 = new SecP160R2FieldElement(t4);
    SecP160R2Field.square(R, X3.x);
    SecP160R2Field.subtract(X3.x, G, X3.x);
    SecP160R2FieldElement Y3 = new SecP160R2FieldElement(G);
    SecP160R2Field.subtract(V, X3.x, Y3.x);
    SecP160R2Field.multiplyAddToExt(Y3.x, R, tt1);
    SecP160R2Field.reduce(tt1, Y3.x);
    SecP160R2FieldElement Z3 = new SecP160R2FieldElement(H);
    if (!Z1IsOne) {
        SecP160R2Field.multiply(Z3.x, Z1.x, Z3.x);
    }
    if (!Z2IsOne) {
        SecP160R2Field.multiply(Z3.x, Z2.x, Z3.x);
    }
    ECFieldElement[] zs = new ECFieldElement[] { Z3 };
    return new SecP160K1Point(curve, X3, Y3, zs);
}
Also used : ECCurve(com.github.zhenwei.core.math.ec.ECCurve) ECFieldElement(com.github.zhenwei.core.math.ec.ECFieldElement) ECPoint(com.github.zhenwei.core.math.ec.ECPoint)

Example 68 with ECFieldElement

use of com.github.zhenwei.core.math.ec.ECFieldElement in project LinLong-Java by zhenwei1108.

the class Curve25519Point method twice.

public ECPoint twice() {
    if (this.isInfinity()) {
        return this;
    }
    ECCurve curve = this.getCurve();
    ECFieldElement Y1 = this.y;
    if (Y1.isZero()) {
        return curve.getInfinity();
    }
    return twiceJacobianModified(true);
}
Also used : ECCurve(com.github.zhenwei.core.math.ec.ECCurve) ECFieldElement(com.github.zhenwei.core.math.ec.ECFieldElement)

Example 69 with ECFieldElement

use of com.github.zhenwei.core.math.ec.ECFieldElement in project LinLong-Java by zhenwei1108.

the class SecP128R1Point method add.

public ECPoint add(ECPoint b) {
    if (this.isInfinity()) {
        return b;
    }
    if (b.isInfinity()) {
        return this;
    }
    if (this == b) {
        return twice();
    }
    ECCurve curve = this.getCurve();
    SecP128R1FieldElement X1 = (SecP128R1FieldElement) this.x, Y1 = (SecP128R1FieldElement) this.y;
    SecP128R1FieldElement X2 = (SecP128R1FieldElement) b.getXCoord(), Y2 = (SecP128R1FieldElement) b.getYCoord();
    SecP128R1FieldElement Z1 = (SecP128R1FieldElement) this.zs[0];
    SecP128R1FieldElement Z2 = (SecP128R1FieldElement) b.getZCoord(0);
    int c;
    int[] tt1 = Nat128.createExt();
    int[] t2 = Nat128.create();
    int[] t3 = Nat128.create();
    int[] t4 = Nat128.create();
    boolean Z1IsOne = Z1.isOne();
    int[] U2, S2;
    if (Z1IsOne) {
        U2 = X2.x;
        S2 = Y2.x;
    } else {
        S2 = t3;
        SecP128R1Field.square(Z1.x, S2);
        U2 = t2;
        SecP128R1Field.multiply(S2, X2.x, U2);
        SecP128R1Field.multiply(S2, Z1.x, S2);
        SecP128R1Field.multiply(S2, Y2.x, S2);
    }
    boolean Z2IsOne = Z2.isOne();
    int[] U1, S1;
    if (Z2IsOne) {
        U1 = X1.x;
        S1 = Y1.x;
    } else {
        S1 = t4;
        SecP128R1Field.square(Z2.x, S1);
        U1 = tt1;
        SecP128R1Field.multiply(S1, X1.x, U1);
        SecP128R1Field.multiply(S1, Z2.x, S1);
        SecP128R1Field.multiply(S1, Y1.x, S1);
    }
    int[] H = Nat128.create();
    SecP128R1Field.subtract(U1, U2, H);
    int[] R = t2;
    SecP128R1Field.subtract(S1, S2, R);
    // Check if b == this or b == -this
    if (Nat128.isZero(H)) {
        if (Nat128.isZero(R)) {
            // this == b, i.e. this must be doubled
            return this.twice();
        }
        // this == -b, i.e. the result is the point at infinity
        return curve.getInfinity();
    }
    int[] HSquared = t3;
    SecP128R1Field.square(H, HSquared);
    int[] G = Nat128.create();
    SecP128R1Field.multiply(HSquared, H, G);
    int[] V = t3;
    SecP128R1Field.multiply(HSquared, U1, V);
    SecP128R1Field.negate(G, G);
    Nat128.mul(S1, G, tt1);
    c = Nat128.addBothTo(V, V, G);
    SecP128R1Field.reduce32(c, G);
    SecP128R1FieldElement X3 = new SecP128R1FieldElement(t4);
    SecP128R1Field.square(R, X3.x);
    SecP128R1Field.subtract(X3.x, G, X3.x);
    SecP128R1FieldElement Y3 = new SecP128R1FieldElement(G);
    SecP128R1Field.subtract(V, X3.x, Y3.x);
    SecP128R1Field.multiplyAddToExt(Y3.x, R, tt1);
    SecP128R1Field.reduce(tt1, Y3.x);
    SecP128R1FieldElement Z3 = new SecP128R1FieldElement(H);
    if (!Z1IsOne) {
        SecP128R1Field.multiply(Z3.x, Z1.x, Z3.x);
    }
    if (!Z2IsOne) {
        SecP128R1Field.multiply(Z3.x, Z2.x, Z3.x);
    }
    ECFieldElement[] zs = new ECFieldElement[] { Z3 };
    return new SecP128R1Point(curve, X3, Y3, zs);
}
Also used : ECCurve(com.github.zhenwei.core.math.ec.ECCurve) ECFieldElement(com.github.zhenwei.core.math.ec.ECFieldElement) ECPoint(com.github.zhenwei.core.math.ec.ECPoint)

Example 70 with ECFieldElement

use of com.github.zhenwei.core.math.ec.ECFieldElement in project LinLong-Java by zhenwei1108.

the class SecP224K1Point method add.

// B.3 pg 62
public ECPoint add(ECPoint b) {
    if (this.isInfinity()) {
        return b;
    }
    if (b.isInfinity()) {
        return this;
    }
    if (this == b) {
        return twice();
    }
    ECCurve curve = this.getCurve();
    SecP224K1FieldElement X1 = (SecP224K1FieldElement) this.x, Y1 = (SecP224K1FieldElement) this.y;
    SecP224K1FieldElement X2 = (SecP224K1FieldElement) b.getXCoord(), Y2 = (SecP224K1FieldElement) b.getYCoord();
    SecP224K1FieldElement Z1 = (SecP224K1FieldElement) this.zs[0];
    SecP224K1FieldElement Z2 = (SecP224K1FieldElement) b.getZCoord(0);
    int c;
    int[] tt1 = Nat224.createExt();
    int[] t2 = Nat224.create();
    int[] t3 = Nat224.create();
    int[] t4 = Nat224.create();
    boolean Z1IsOne = Z1.isOne();
    int[] U2, S2;
    if (Z1IsOne) {
        U2 = X2.x;
        S2 = Y2.x;
    } else {
        S2 = t3;
        SecP224K1Field.square(Z1.x, S2);
        U2 = t2;
        SecP224K1Field.multiply(S2, X2.x, U2);
        SecP224K1Field.multiply(S2, Z1.x, S2);
        SecP224K1Field.multiply(S2, Y2.x, S2);
    }
    boolean Z2IsOne = Z2.isOne();
    int[] U1, S1;
    if (Z2IsOne) {
        U1 = X1.x;
        S1 = Y1.x;
    } else {
        S1 = t4;
        SecP224K1Field.square(Z2.x, S1);
        U1 = tt1;
        SecP224K1Field.multiply(S1, X1.x, U1);
        SecP224K1Field.multiply(S1, Z2.x, S1);
        SecP224K1Field.multiply(S1, Y1.x, S1);
    }
    int[] H = Nat224.create();
    SecP224K1Field.subtract(U1, U2, H);
    int[] R = t2;
    SecP224K1Field.subtract(S1, S2, R);
    // Check if b == this or b == -this
    if (Nat224.isZero(H)) {
        if (Nat224.isZero(R)) {
            // this == b, i.e. this must be doubled
            return this.twice();
        }
        // this == -b, i.e. the result is the point at infinity
        return curve.getInfinity();
    }
    int[] HSquared = t3;
    SecP224K1Field.square(H, HSquared);
    int[] G = Nat224.create();
    SecP224K1Field.multiply(HSquared, H, G);
    int[] V = t3;
    SecP224K1Field.multiply(HSquared, U1, V);
    SecP224K1Field.negate(G, G);
    Nat224.mul(S1, G, tt1);
    c = Nat224.addBothTo(V, V, G);
    SecP224K1Field.reduce32(c, G);
    SecP224K1FieldElement X3 = new SecP224K1FieldElement(t4);
    SecP224K1Field.square(R, X3.x);
    SecP224K1Field.subtract(X3.x, G, X3.x);
    SecP224K1FieldElement Y3 = new SecP224K1FieldElement(G);
    SecP224K1Field.subtract(V, X3.x, Y3.x);
    SecP224K1Field.multiplyAddToExt(Y3.x, R, tt1);
    SecP224K1Field.reduce(tt1, Y3.x);
    SecP224K1FieldElement Z3 = new SecP224K1FieldElement(H);
    if (!Z1IsOne) {
        SecP224K1Field.multiply(Z3.x, Z1.x, Z3.x);
    }
    if (!Z2IsOne) {
        SecP224K1Field.multiply(Z3.x, Z2.x, Z3.x);
    }
    ECFieldElement[] zs = new ECFieldElement[] { Z3 };
    return new SecP224K1Point(curve, X3, Y3, zs);
}
Also used : ECCurve(com.github.zhenwei.core.math.ec.ECCurve) ECFieldElement(com.github.zhenwei.core.math.ec.ECFieldElement) ECPoint(com.github.zhenwei.core.math.ec.ECPoint)

Aggregations

ECFieldElement (com.github.zhenwei.core.math.ec.ECFieldElement)133 ECCurve (com.github.zhenwei.core.math.ec.ECCurve)71 ECPoint (com.github.zhenwei.core.math.ec.ECPoint)36 BigInteger (java.math.BigInteger)7 ECDomainParameters (com.github.zhenwei.core.crypto.params.ECDomainParameters)3 ECPublicKeyParameters (com.github.zhenwei.core.crypto.params.ECPublicKeyParameters)2 ECPrivateKeyParameters (com.github.zhenwei.core.crypto.params.ECPrivateKeyParameters)1 ECMultiplier (com.github.zhenwei.core.math.ec.ECMultiplier)1 SecureRandom (java.security.SecureRandom)1 ArrayList (java.util.ArrayList)1 Random (java.util.Random)1