Search in sources :

Example 36 with ECFieldElement

use of com.github.zhenwei.core.math.ec.ECFieldElement in project LinLong-Java by zhenwei1108.

the class SecT163R2Point method twice.

public ECPoint twice() {
    if (this.isInfinity()) {
        return this;
    }
    ECCurve curve = this.getCurve();
    ECFieldElement X1 = this.x;
    if (X1.isZero()) {
        // A point with X == 0 is its own additive inverse
        return curve.getInfinity();
    }
    ECFieldElement L1 = this.y, Z1 = this.zs[0];
    boolean Z1IsOne = Z1.isOne();
    ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.multiply(Z1);
    ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.square();
    ECFieldElement T = L1.square().add(L1Z1).add(Z1Sq);
    if (T.isZero()) {
        return new SecT163R2Point(curve, T, curve.getB().sqrt());
    }
    ECFieldElement X3 = T.square();
    ECFieldElement Z3 = Z1IsOne ? T : T.multiply(Z1Sq);
    ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.multiply(Z1);
    ECFieldElement L3 = X1Z1.squarePlusProduct(T, L1Z1).add(X3).add(Z3);
    return new SecT163R2Point(curve, X3, L3, new ECFieldElement[] { Z3 });
}
Also used : ECCurve(com.github.zhenwei.core.math.ec.ECCurve) ECFieldElement(com.github.zhenwei.core.math.ec.ECFieldElement)

Example 37 with ECFieldElement

use of com.github.zhenwei.core.math.ec.ECFieldElement in project LinLong-Java by zhenwei1108.

the class SecP256R1Point method add.

public ECPoint add(ECPoint b) {
    if (this.isInfinity()) {
        return b;
    }
    if (b.isInfinity()) {
        return this;
    }
    if (this == b) {
        return twice();
    }
    ECCurve curve = this.getCurve();
    SecP256R1FieldElement X1 = (SecP256R1FieldElement) this.x, Y1 = (SecP256R1FieldElement) this.y;
    SecP256R1FieldElement X2 = (SecP256R1FieldElement) b.getXCoord(), Y2 = (SecP256R1FieldElement) b.getYCoord();
    SecP256R1FieldElement Z1 = (SecP256R1FieldElement) this.zs[0];
    SecP256R1FieldElement Z2 = (SecP256R1FieldElement) b.getZCoord(0);
    int c;
    int[] tt1 = Nat256.createExt();
    int[] t2 = Nat256.create();
    int[] t3 = Nat256.create();
    int[] t4 = Nat256.create();
    boolean Z1IsOne = Z1.isOne();
    int[] U2, S2;
    if (Z1IsOne) {
        U2 = X2.x;
        S2 = Y2.x;
    } else {
        S2 = t3;
        SecP256R1Field.square(Z1.x, S2);
        U2 = t2;
        SecP256R1Field.multiply(S2, X2.x, U2);
        SecP256R1Field.multiply(S2, Z1.x, S2);
        SecP256R1Field.multiply(S2, Y2.x, S2);
    }
    boolean Z2IsOne = Z2.isOne();
    int[] U1, S1;
    if (Z2IsOne) {
        U1 = X1.x;
        S1 = Y1.x;
    } else {
        S1 = t4;
        SecP256R1Field.square(Z2.x, S1);
        U1 = tt1;
        SecP256R1Field.multiply(S1, X1.x, U1);
        SecP256R1Field.multiply(S1, Z2.x, S1);
        SecP256R1Field.multiply(S1, Y1.x, S1);
    }
    int[] H = Nat256.create();
    SecP256R1Field.subtract(U1, U2, H);
    int[] R = t2;
    SecP256R1Field.subtract(S1, S2, R);
    // Check if b == this or b == -this
    if (Nat256.isZero(H)) {
        if (Nat256.isZero(R)) {
            // this == b, i.e. this must be doubled
            return this.twice();
        }
        // this == -b, i.e. the result is the point at infinity
        return curve.getInfinity();
    }
    int[] HSquared = t3;
    SecP256R1Field.square(H, HSquared);
    int[] G = Nat256.create();
    SecP256R1Field.multiply(HSquared, H, G);
    int[] V = t3;
    SecP256R1Field.multiply(HSquared, U1, V);
    SecP256R1Field.negate(G, G);
    Nat256.mul(S1, G, tt1);
    c = Nat256.addBothTo(V, V, G);
    SecP256R1Field.reduce32(c, G);
    SecP256R1FieldElement X3 = new SecP256R1FieldElement(t4);
    SecP256R1Field.square(R, X3.x);
    SecP256R1Field.subtract(X3.x, G, X3.x);
    SecP256R1FieldElement Y3 = new SecP256R1FieldElement(G);
    SecP256R1Field.subtract(V, X3.x, Y3.x);
    SecP256R1Field.multiplyAddToExt(Y3.x, R, tt1);
    SecP256R1Field.reduce(tt1, Y3.x);
    SecP256R1FieldElement Z3 = new SecP256R1FieldElement(H);
    if (!Z1IsOne) {
        SecP256R1Field.multiply(Z3.x, Z1.x, Z3.x);
    }
    if (!Z2IsOne) {
        SecP256R1Field.multiply(Z3.x, Z2.x, Z3.x);
    }
    ECFieldElement[] zs = new ECFieldElement[] { Z3 };
    return new SecP256R1Point(curve, X3, Y3, zs);
}
Also used : ECCurve(com.github.zhenwei.core.math.ec.ECCurve) ECFieldElement(com.github.zhenwei.core.math.ec.ECFieldElement) ECPoint(com.github.zhenwei.core.math.ec.ECPoint)

Example 38 with ECFieldElement

use of com.github.zhenwei.core.math.ec.ECFieldElement in project LinLong-Java by zhenwei1108.

the class SecP384R1Point method add.

public ECPoint add(ECPoint b) {
    if (this.isInfinity()) {
        return b;
    }
    if (b.isInfinity()) {
        return this;
    }
    if (this == b) {
        return twice();
    }
    ECCurve curve = this.getCurve();
    SecP384R1FieldElement X1 = (SecP384R1FieldElement) this.x, Y1 = (SecP384R1FieldElement) this.y;
    SecP384R1FieldElement X2 = (SecP384R1FieldElement) b.getXCoord(), Y2 = (SecP384R1FieldElement) b.getYCoord();
    SecP384R1FieldElement Z1 = (SecP384R1FieldElement) this.zs[0];
    SecP384R1FieldElement Z2 = (SecP384R1FieldElement) b.getZCoord(0);
    int c;
    int[] tt1 = Nat.create(24);
    int[] tt2 = Nat.create(24);
    int[] t3 = Nat.create(12);
    int[] t4 = Nat.create(12);
    boolean Z1IsOne = Z1.isOne();
    int[] U2, S2;
    if (Z1IsOne) {
        U2 = X2.x;
        S2 = Y2.x;
    } else {
        S2 = t3;
        SecP384R1Field.square(Z1.x, S2);
        U2 = tt2;
        SecP384R1Field.multiply(S2, X2.x, U2);
        SecP384R1Field.multiply(S2, Z1.x, S2);
        SecP384R1Field.multiply(S2, Y2.x, S2);
    }
    boolean Z2IsOne = Z2.isOne();
    int[] U1, S1;
    if (Z2IsOne) {
        U1 = X1.x;
        S1 = Y1.x;
    } else {
        S1 = t4;
        SecP384R1Field.square(Z2.x, S1);
        U1 = tt1;
        SecP384R1Field.multiply(S1, X1.x, U1);
        SecP384R1Field.multiply(S1, Z2.x, S1);
        SecP384R1Field.multiply(S1, Y1.x, S1);
    }
    int[] H = Nat.create(12);
    SecP384R1Field.subtract(U1, U2, H);
    int[] R = Nat.create(12);
    SecP384R1Field.subtract(S1, S2, R);
    // Check if b == this or b == -this
    if (Nat.isZero(12, H)) {
        if (Nat.isZero(12, R)) {
            // this == b, i.e. this must be doubled
            return this.twice();
        }
        // this == -b, i.e. the result is the point at infinity
        return curve.getInfinity();
    }
    int[] HSquared = t3;
    SecP384R1Field.square(H, HSquared);
    int[] G = Nat.create(12);
    SecP384R1Field.multiply(HSquared, H, G);
    int[] V = t3;
    SecP384R1Field.multiply(HSquared, U1, V);
    SecP384R1Field.negate(G, G);
    Nat384.mul(S1, G, tt1);
    c = Nat.addBothTo(12, V, V, G);
    SecP384R1Field.reduce32(c, G);
    SecP384R1FieldElement X3 = new SecP384R1FieldElement(t4);
    SecP384R1Field.square(R, X3.x);
    SecP384R1Field.subtract(X3.x, G, X3.x);
    SecP384R1FieldElement Y3 = new SecP384R1FieldElement(G);
    SecP384R1Field.subtract(V, X3.x, Y3.x);
    Nat384.mul(Y3.x, R, tt2);
    SecP384R1Field.addExt(tt1, tt2, tt1);
    SecP384R1Field.reduce(tt1, Y3.x);
    SecP384R1FieldElement Z3 = new SecP384R1FieldElement(H);
    if (!Z1IsOne) {
        SecP384R1Field.multiply(Z3.x, Z1.x, Z3.x);
    }
    if (!Z2IsOne) {
        SecP384R1Field.multiply(Z3.x, Z2.x, Z3.x);
    }
    ECFieldElement[] zs = new ECFieldElement[] { Z3 };
    return new SecP384R1Point(curve, X3, Y3, zs);
}
Also used : ECCurve(com.github.zhenwei.core.math.ec.ECCurve) ECFieldElement(com.github.zhenwei.core.math.ec.ECFieldElement) ECPoint(com.github.zhenwei.core.math.ec.ECPoint)

Example 39 with ECFieldElement

use of com.github.zhenwei.core.math.ec.ECFieldElement in project LinLong-Java by zhenwei1108.

the class SecP521R1Point method add.

public ECPoint add(ECPoint b) {
    if (this.isInfinity()) {
        return b;
    }
    if (b.isInfinity()) {
        return this;
    }
    if (this == b) {
        return twice();
    }
    ECCurve curve = this.getCurve();
    SecP521R1FieldElement X1 = (SecP521R1FieldElement) this.x, Y1 = (SecP521R1FieldElement) this.y;
    SecP521R1FieldElement X2 = (SecP521R1FieldElement) b.getXCoord(), Y2 = (SecP521R1FieldElement) b.getYCoord();
    SecP521R1FieldElement Z1 = (SecP521R1FieldElement) this.zs[0];
    SecP521R1FieldElement Z2 = (SecP521R1FieldElement) b.getZCoord(0);
    int[] t1 = Nat.create(17);
    int[] t2 = Nat.create(17);
    int[] t3 = Nat.create(17);
    int[] t4 = Nat.create(17);
    boolean Z1IsOne = Z1.isOne();
    int[] U2, S2;
    if (Z1IsOne) {
        U2 = X2.x;
        S2 = Y2.x;
    } else {
        S2 = t3;
        SecP521R1Field.square(Z1.x, S2);
        U2 = t2;
        SecP521R1Field.multiply(S2, X2.x, U2);
        SecP521R1Field.multiply(S2, Z1.x, S2);
        SecP521R1Field.multiply(S2, Y2.x, S2);
    }
    boolean Z2IsOne = Z2.isOne();
    int[] U1, S1;
    if (Z2IsOne) {
        U1 = X1.x;
        S1 = Y1.x;
    } else {
        S1 = t4;
        SecP521R1Field.square(Z2.x, S1);
        U1 = t1;
        SecP521R1Field.multiply(S1, X1.x, U1);
        SecP521R1Field.multiply(S1, Z2.x, S1);
        SecP521R1Field.multiply(S1, Y1.x, S1);
    }
    int[] H = Nat.create(17);
    SecP521R1Field.subtract(U1, U2, H);
    int[] R = t2;
    SecP521R1Field.subtract(S1, S2, R);
    // Check if b == this or b == -this
    if (Nat.isZero(17, H)) {
        if (Nat.isZero(17, R)) {
            // this == b, i.e. this must be doubled
            return this.twice();
        }
        // this == -b, i.e. the result is the point at infinity
        return curve.getInfinity();
    }
    int[] HSquared = t3;
    SecP521R1Field.square(H, HSquared);
    int[] G = Nat.create(17);
    SecP521R1Field.multiply(HSquared, H, G);
    int[] V = t3;
    SecP521R1Field.multiply(HSquared, U1, V);
    SecP521R1Field.multiply(S1, G, t1);
    SecP521R1FieldElement X3 = new SecP521R1FieldElement(t4);
    SecP521R1Field.square(R, X3.x);
    SecP521R1Field.add(X3.x, G, X3.x);
    SecP521R1Field.subtract(X3.x, V, X3.x);
    SecP521R1Field.subtract(X3.x, V, X3.x);
    SecP521R1FieldElement Y3 = new SecP521R1FieldElement(G);
    SecP521R1Field.subtract(V, X3.x, Y3.x);
    SecP521R1Field.multiply(Y3.x, R, t2);
    SecP521R1Field.subtract(t2, t1, Y3.x);
    SecP521R1FieldElement Z3 = new SecP521R1FieldElement(H);
    if (!Z1IsOne) {
        SecP521R1Field.multiply(Z3.x, Z1.x, Z3.x);
    }
    if (!Z2IsOne) {
        SecP521R1Field.multiply(Z3.x, Z2.x, Z3.x);
    }
    ECFieldElement[] zs = new ECFieldElement[] { Z3 };
    return new SecP521R1Point(curve, X3, Y3, zs);
}
Also used : ECCurve(com.github.zhenwei.core.math.ec.ECCurve) ECFieldElement(com.github.zhenwei.core.math.ec.ECFieldElement)

Example 40 with ECFieldElement

use of com.github.zhenwei.core.math.ec.ECFieldElement in project LinLong-Java by zhenwei1108.

the class SecT193R1Point method negate.

public ECPoint negate() {
    if (this.isInfinity()) {
        return this;
    }
    ECFieldElement X = this.x;
    if (X.isZero()) {
        return this;
    }
    // L is actually Lambda (X + Y/X) here
    ECFieldElement L = this.y, Z = this.zs[0];
    return new SecT193R1Point(curve, X, L.add(Z), new ECFieldElement[] { Z });
}
Also used : ECFieldElement(com.github.zhenwei.core.math.ec.ECFieldElement)

Aggregations

ECFieldElement (com.github.zhenwei.core.math.ec.ECFieldElement)133 ECCurve (com.github.zhenwei.core.math.ec.ECCurve)71 ECPoint (com.github.zhenwei.core.math.ec.ECPoint)36 BigInteger (java.math.BigInteger)7 ECDomainParameters (com.github.zhenwei.core.crypto.params.ECDomainParameters)3 ECPublicKeyParameters (com.github.zhenwei.core.crypto.params.ECPublicKeyParameters)2 ECPrivateKeyParameters (com.github.zhenwei.core.crypto.params.ECPrivateKeyParameters)1 ECMultiplier (com.github.zhenwei.core.math.ec.ECMultiplier)1 SecureRandom (java.security.SecureRandom)1 ArrayList (java.util.ArrayList)1 Random (java.util.Random)1