use of com.linkedin.util.degrader.DegraderControl in project rest.li by linkedin.
the class DegraderLoadBalancerTest method testWeightedAndLatencyDegradationBalancingRing.
@Test(groups = { "small", "back-end" }, dataProvider = "consistentHashAlgorithms")
public void testWeightedAndLatencyDegradationBalancingRing(String consistentHashAlgorithm) throws URISyntaxException {
DegraderLoadBalancerStrategyV3 strategy = getStrategy(consistentHashAlgorithm);
List<TrackerClient> clients = new ArrayList<TrackerClient>();
URI uri1 = URI.create("http://test.linkedin.com:3242/fdsaf");
URI uri2 = URI.create("http://test.linkedin.com:3243/fdsaf");
TestClock clock1 = new TestClock();
TestClock clock2 = new TestClock();
TrackerClient client1 = new TrackerClient(uri1, getDefaultPartitionData(1d), new TestLoadBalancerClient(uri1), clock1, null);
TrackerClient client2 = new TrackerClient(uri2, getDefaultPartitionData(0.8d), new TestLoadBalancerClient(uri2), clock2, null);
clients.add(client1);
clients.add(client2);
DegraderControl dcClient2Default = client2.getDegraderControl(DEFAULT_PARTITION_ID);
dcClient2Default.setOverrideMinCallCount(1);
dcClient2Default.setMinCallCount(1);
dcClient2Default.setMaxDropRate(1d);
dcClient2Default.setUpStep(0.4d);
dcClient2Default.setHighErrorRate(0);
CallCompletion cc = client2.getCallTracker().startCall();
clock2.addMs(1);
cc.endCallWithError();
clock1.addMs(15000);
clock2.addMs(5000);
// trigger a state update
assertNotNull(getTrackerClient(strategy, null, new RequestContext(), 1, clients));
// now do a basic verification to verify getTrackerClient is properly weighting things
double calls = 10000d;
int client1Count = 0;
int client2Count = 0;
double tolerance = 0.05d;
for (int i = 0; i < calls; ++i) {
TrackerClient client = getTrackerClient(strategy, null, new RequestContext(), 1, clients);
assertNotNull(client);
if (client.getUri().equals(uri1)) {
++client1Count;
} else {
++client2Count;
}
}
assertTrue(Math.abs((client1Count / calls) - (100 / 148d)) < tolerance);
assertTrue(Math.abs((client2Count / calls) - (48 / 148d)) < tolerance);
}
use of com.linkedin.util.degrader.DegraderControl in project rest.li by linkedin.
the class DegraderLoadBalancerTest method testWeightedAndLatencyDegradationBalancingRingWithPartitions.
@Test(groups = { "small", "back-end" }, dataProvider = "consistentHashAlgorithms")
public void testWeightedAndLatencyDegradationBalancingRingWithPartitions(String consistentHashAlgorithm) throws URISyntaxException {
DegraderLoadBalancerStrategyV3 strategy = getStrategy(consistentHashAlgorithm);
List<TrackerClient> clientsForPartition0 = new ArrayList<TrackerClient>();
List<TrackerClient> clientsForPartition1 = new ArrayList<TrackerClient>();
URI uri1 = URI.create("http://someTestService/someTestUrl");
URI uri2 = URI.create("http://abcxfweuoeueoueoueoukeueoueoueoueoueouo/2354");
URI uri3 = URI.create("http://slashdot/blah");
URI uri4 = URI.create("http://idle/server");
TestClock clock1 = new TestClock();
TestClock clock2 = new TestClock();
TestClock clock3 = new TestClock();
@SuppressWarnings("serial") TrackerClient client1 = new TrackerClient(uri1, new HashMap<Integer, PartitionData>() {
{
put(0, new PartitionData(1d));
}
}, new TestLoadBalancerClient(uri1), clock1, null);
@SuppressWarnings("serial") TrackerClient client2 = new TrackerClient(uri2, new HashMap<Integer, PartitionData>() {
{
put(0, new PartitionData(0.5d));
put(1, new PartitionData(0.5d));
}
}, new TestLoadBalancerClient(uri2), clock2, null);
@SuppressWarnings("serial") TrackerClient client3 = new TrackerClient(uri3, new HashMap<Integer, PartitionData>() {
{
put(1, new PartitionData(1d));
}
}, new TestLoadBalancerClient(uri3), clock3, null);
final int partitionId0 = 0;
clientsForPartition0.add(client1);
clientsForPartition0.add(client2);
final int partitionId1 = 1;
clientsForPartition1.add(client2);
clientsForPartition1.add(client3);
// force client2 to be disabled
DegraderControl dcClient2Partition0 = client2.getDegraderControl(0);
DegraderControl dcClient2Partition1 = client2.getDegraderControl(1);
dcClient2Partition0.setOverrideMinCallCount(1);
dcClient2Partition0.setMinCallCount(1);
dcClient2Partition0.setMaxDropRate(1d);
dcClient2Partition0.setUpStep(0.4d);
dcClient2Partition0.setHighErrorRate(0);
dcClient2Partition1.setOverrideMinCallCount(1);
dcClient2Partition1.setMinCallCount(1);
dcClient2Partition1.setMaxDropRate(1d);
dcClient2Partition1.setUpStep(0.4d);
dcClient2Partition1.setHighErrorRate(0);
CallCompletion cc = client2.getCallTracker().startCall();
clock2.addMs(1);
cc.endCallWithError();
// force client3 to be disabled
DegraderControl dcClient3Partition1 = client3.getDegraderControl(1);
dcClient3Partition1.setOverrideMinCallCount(1);
dcClient3Partition1.setMinCallCount(1);
dcClient3Partition1.setMaxDropRate(1d);
dcClient3Partition1.setHighErrorRate(0);
dcClient3Partition1.setUpStep(0.2d);
CallCompletion cc3 = client3.getCallTracker().startCall();
clock3.addMs(1);
cc3.endCallWithError();
clock1.addMs(15000);
clock2.addMs(5000);
clock3.addMs(5000);
// trigger a state update
assertNotNull(strategy.getTrackerClient(null, new RequestContext(), 1, partitionId0, clientsForPartition0));
assertNotNull(strategy.getTrackerClient(null, new RequestContext(), 1, partitionId1, clientsForPartition1));
assertNotNull(strategy.getRing(1, partitionId0, clientsForPartition0));
assertNotNull(strategy.getRing(1, partitionId1, clientsForPartition1));
// now do a basic verification to verify getTrackerClient is properly weighting things
int calls = 10000;
int client1Count = 0;
int client2Count = 0;
double tolerance = 0.05d;
for (int i = 0; i < calls; ++i) {
TrackerClient client = strategy.getTrackerClient(null, new RequestContext(), 1, partitionId0, clientsForPartition0);
assertNotNull(client);
if (client.getUri().equals(uri1)) {
++client1Count;
} else {
++client2Count;
}
}
assertTrue(Math.abs((client1Count / (double) calls) - (100 / 130d)) < tolerance);
assertTrue(Math.abs((client2Count / (double) calls) - (30 / 130d)) < tolerance);
client2Count = 0;
int client3Count = 0;
int client4Count = 0;
for (int i = 0; i < calls; ++i) {
TrackerClient client = strategy.getTrackerClient(null, new RequestContext(), 1, partitionId1, clientsForPartition1);
assertNotNull(client);
if (client.getUri().equals(uri3)) {
++client3Count;
} else if (client.getUri().equals(uri2)) {
++client2Count;
} else {
++client4Count;
}
}
assertTrue(Math.abs((client3Count / (double) calls) - (80 / 110d)) < tolerance);
assertTrue(Math.abs((client2Count / (double) calls) - (30 / 110d)) < tolerance);
assertTrue(client4Count == 0);
}
use of com.linkedin.util.degrader.DegraderControl in project rest.li by linkedin.
the class DegraderLoadBalancerStrategyV3 method doUpdatePartitionState.
/**
* updatePartitionState
*
* We have two mechanisms to influence the health and traffic patterns of the client. They are
* by load balancing (switching traffic from one host to another) and by degrading service
* (dropping calls). We load balance by allocating points in a consistent hash ring based on the
* computedDropRate of the individual TrackerClients, which takes into account the latency
* seen by that TrackerClient's requests. We can alternatively, if the cluster is
* unhealthy (by using a high latency watermark) drop a portion of traffic across all tracker
* clients corresponding to this cluster.
*
* The reason we do not currently consider error rate when adjusting the hash ring is that
* there are legitimate errors that servers can send back for clients to handle, such as
* 400 return codes. A potential improvement would be to catch transport level exceptions and 500
* level return codes, but the implication of that would need to be carefully understood and documented.
*
* We don't want both to reduce hash points and allow clients to manage their own drop rates
* because the clients do not have a global view that the load balancing strategy does. Without
* a global view, the clients won't know if it already has a reduced number of hash points. If the
* client continues to drop at the same drop rate as before their points have been reduced, then
* the client would have its outbound request reduced by both reduction in points and the client's
* drop rate. To avoid this, the drop rate is managed globally by the load balancing strategy and
* provided to each client. The strategy will alternate between adjusting the hash ring points or
* the global drop rate in order to avoid double penalizing a client.
*
* We also have a mechanism for recovery if the number of points in the hash ring is not
* enough to receive traffic. The initialRecoveryLevel is a number between 0.0 and 1.0, and
* corresponds to a weight of the tracker client's full hash points.
* The reason for the weight is to allow an initialRecoveryLevel that corresponds to
* less than one hash point. This would be useful if a "cooling off" period is desirable for the
* misbehaving tracker clients, ie , given a full weight of 100 hash points,0.005 means that
* there will be one cooling off period before the client is reintroduced into the hash ring.
*
* The second configuration, rampFactor, will geometrically increase the
* previous recoveryLevel if traffic still hasn't been seen for that tracker client.
*
* For example, given initialRecoveryLevel = 0.01, rampFactor = 2, and default tracker client hash
* points of 100, we will increase the hash points in this pattern on successive update States:
* 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, etc., aborting as soon as
* calls are recorded for that tracker client.
*
* We also have highWaterMark and lowWaterMark as properties of the DegraderLoadBalancer strategy
* so that the strategy can make decisions on whether to start dropping traffic globally across
* all tracker clients for this cluster. The amount of traffic to drop is controlled by the
* globalStepUp and globalStepDown properties, where globalStepUp controls how much the global
* drop rate increases per interval, and globalStepDown controls how much the global drop rate
* decreases per interval. We only step up the global drop rate when the average cluster latency
* is higher than the highWaterMark, and only step down the global drop rate when the average
* cluster latency is lower than the global drop rate.
*
* This code is thread reentrant. Multiple threads can potentially call this concurrently, and so
* callers must pass in the DegraderLoadBalancerState that they based their shouldUpdate() call on.
* The multiple threads may have different views of the trackerClients latency, but this is
* ok as the new state in the end will have only taken one action (either loadbalance or
* call-dropping with at most one step). Currently we will not call this concurrently, as
* checkUpdatePartitionState will control entry to a single thread.
*
* @param clusterGenerationId
* @param trackerClientUpdaters
* @param oldState
* @param config
*/
private static PartitionDegraderLoadBalancerState doUpdatePartitionState(long clusterGenerationId, int partitionId, PartitionDegraderLoadBalancerState oldState, DegraderLoadBalancerStrategyConfig config, List<TrackerClientUpdater> trackerClientUpdaters, boolean isQuarantineEnabled) {
debug(_log, "updating state for: ", trackerClientUpdaters);
double sumOfClusterLatencies = 0.0;
long totalClusterCallCount = 0;
double newMaxDropRate;
boolean hashRingChanges = false;
boolean recoveryMapChanges = false;
boolean quarantineMapChanged = false;
PartitionDegraderLoadBalancerState.Strategy strategy = oldState.getStrategy();
Map<TrackerClient, Double> oldRecoveryMap = oldState.getRecoveryMap();
Map<TrackerClient, Double> newRecoveryMap = new HashMap<TrackerClient, Double>(oldRecoveryMap);
double currentOverrideDropRate = oldState.getCurrentOverrideDropRate();
double initialRecoveryLevel = config.getInitialRecoveryLevel();
double ringRampFactor = config.getRingRampFactor();
int pointsPerWeight = config.getPointsPerWeight();
PartitionDegraderLoadBalancerState newState;
Map<TrackerClient, DegraderLoadBalancerQuarantine> quarantineMap = oldState.getQuarantineMap();
Map<TrackerClient, DegraderLoadBalancerQuarantine> quarantineHistory = oldState.getQuarantineHistory();
Set<TrackerClient> activeClients = new HashSet<>();
long clk = config.getClock().currentTimeMillis();
for (TrackerClientUpdater clientUpdater : trackerClientUpdaters) {
TrackerClient client = clientUpdater.getTrackerClient();
DegraderControl degraderControl = client.getDegraderControl(partitionId);
double averageLatency = degraderControl.getLatency();
long callCount = degraderControl.getCallCount();
oldState.getPreviousMaxDropRate().put(client, clientUpdater.getMaxDropRate());
sumOfClusterLatencies += averageLatency * callCount;
totalClusterCallCount += callCount;
boolean recoveryMapContainsClient = newRecoveryMap.containsKey(client);
if (isQuarantineEnabled) {
activeClients.add(client);
// Check/update quarantine state if current client is already under quarantine
DegraderLoadBalancerQuarantine quarantine = quarantineMap.get(client);
if (quarantine != null && quarantine.checkUpdateQuarantineState()) {
// Evict client from quarantine
quarantineMap.remove(client);
quarantineHistory.put(client, quarantine);
_log.info("TrackerClient {} evicted from quarantine @ {}", client.getUri(), clk);
// Next need to put the client to slow-start/recovery mode to gradually pick up traffic.
// For now simply force the weight to the initialRecoveryLevel so the client can gradually recover
// RecoveryMap is used here to track the clients that just evicted from quarantine
// They'll not be quarantined again in the recovery phase even though the effective
// weight is within the range.
newRecoveryMap.put(client, degraderControl.getMaxDropRate());
clientUpdater.setMaxDropRate(1.0 - initialRecoveryLevel);
quarantineMapChanged = true;
}
}
if (recoveryMapContainsClient) {
// points in the hash ring for the clients.
if (callCount == 0) {
// if this client is enrolled in the program, decrease the maxDropRate
// it is important to note that this excludes clients that haven't gotten traffic
// due solely to low volume.
double oldMaxDropRate = clientUpdater.getMaxDropRate();
double transmissionRate = 1.0 - oldMaxDropRate;
if (transmissionRate <= 0.0) {
// We use the initialRecoveryLevel to indicate how many points to initially set
// the tracker client to when traffic has stopped flowing to this node.
transmissionRate = initialRecoveryLevel;
} else {
transmissionRate *= ringRampFactor;
transmissionRate = Math.min(transmissionRate, 1.0);
}
newMaxDropRate = 1.0 - transmissionRate;
if (strategy == PartitionDegraderLoadBalancerState.Strategy.LOAD_BALANCE) {
// if it's the hash ring's turn to adjust, then adjust the maxDropRate.
// Otherwise, we let the call dropping strategy take it's turn, even if
// it may do nothing.
clientUpdater.setMaxDropRate(newMaxDropRate);
}
recoveryMapChanges = true;
} else {
// else if the recovery map contains the client and the call count was > 0
// tough love here, once the rehab clients start taking traffic, we
// restore their maxDropRate to it's original value, and unenroll them
// from the program.
// This is safe because the hash ring points are controlled by the
// computedDropRate variable, and the call dropping rate is controlled by
// the overrideDropRate. The maxDropRate only serves to cap the computedDropRate and
// overrideDropRate.
// We store the maxDropRate and restore it here because the initialRecoveryLevel could
// potentially be higher than what the default maxDropRate allowed. (the maxDropRate doesn't
// necessarily have to be 1.0). For instance, if the maxDropRate was 0.99, and the
// initialRecoveryLevel was 0.05 then we need to store the old maxDropRate.
clientUpdater.setMaxDropRate(newRecoveryMap.get(client));
newRecoveryMap.remove(client);
recoveryMapChanges = true;
}
}
}
// in TrackerClientUpdaters -- those URIs were removed from zookeeper
if (isQuarantineEnabled) {
quarantineMap.entrySet().removeIf(e -> !activeClients.contains(e.getKey()));
quarantineHistory.entrySet().removeIf(e -> !activeClients.contains(e.getKey()));
}
if (oldState.getClusterGenerationId() == clusterGenerationId && totalClusterCallCount <= 0 && !recoveryMapChanges && !quarantineMapChanged) {
// if the cluster has not been called recently (total cluster call count is <= 0)
// and we already have a state with the same set of URIs (same cluster generation),
// and no clients are in rehab or evicted from quarantine, then don't change anything.
debug(_log, "New state is the same as the old state so we're not changing anything. Old state = ", oldState, ", config= ", config);
return new PartitionDegraderLoadBalancerState(oldState, clusterGenerationId, config.getClock().currentTimeMillis());
}
// update our overrides.
double newCurrentAvgClusterLatency = -1;
if (totalClusterCallCount > 0) {
newCurrentAvgClusterLatency = sumOfClusterLatencies / totalClusterCallCount;
}
debug(_log, "average cluster latency: ", newCurrentAvgClusterLatency);
// This points map stores how many hash map points to allocate for each tracker client.
Map<URI, Integer> points = new HashMap<URI, Integer>();
Map<URI, Integer> oldPointsMap = oldState.getPointsMap();
for (TrackerClientUpdater clientUpdater : trackerClientUpdaters) {
TrackerClient client = clientUpdater.getTrackerClient();
double successfulTransmissionWeight;
URI clientUri = client.getUri();
// Don't take into account cluster health when calculating the number of points
// for each client. This is because the individual clients already take into account
// latency and errors, and a successfulTransmissionWeight can and should be made
// independent of other nodes in the cluster. Otherwise, one unhealthy client in a small
// cluster can take down the entire cluster if the avg latency is too high.
// The global drop rate will take into account the cluster latency. High cluster-wide error
// rates are not something d2 can address.
//
// this client's maxDropRate and currentComputedDropRate may have been adjusted if it's in the
// rehab program (to gradually send traffic it's way).
DegraderControl degraderControl = client.getDegraderControl(partitionId);
double dropRate = Math.min(degraderControl.getCurrentComputedDropRate(), clientUpdater.getMaxDropRate());
// calculate the weight as the probability of successful transmission to this
// node divided by the probability of successful transmission to the entire
// cluster
double clientWeight = client.getPartitionWeight(partitionId);
successfulTransmissionWeight = clientWeight * (1.0 - dropRate);
// calculate the weight as the probability of a successful transmission to this node
// multiplied by the client's self-defined weight. thus, the node's final weight
// takes into account both the self defined weight (to account for different
// hardware in the same cluster) and the performance of the node (as defined by the
// node's degrader).
debug(_log, "computed new weight for uri ", clientUri, ": ", successfulTransmissionWeight);
// keep track if we're making actual changes to the Hash Ring in this updatePartitionState.
int newPoints = (int) (successfulTransmissionWeight * pointsPerWeight);
boolean quarantineEffect = false;
if (isQuarantineEnabled) {
if (quarantineMap.containsKey(client)) {
// If the client is still in quarantine, keep the points to 0 so no real traffic will be used
newPoints = 0;
quarantineEffect = true;
} else // HTTP_LB_QUARANTINE_MAX_PERCENT)
if (successfulTransmissionWeight <= 0.0 && clientWeight > EPSILON && degraderControl.isHigh()) {
if (1.0 * quarantineMap.size() < Math.ceil(trackerClientUpdaters.size() * config.getQuarantineMaxPercent())) {
// Put the client into quarantine
DegraderLoadBalancerQuarantine quarantine = quarantineHistory.remove(client);
if (quarantine == null) {
quarantine = new DegraderLoadBalancerQuarantine(clientUpdater, config, oldState.getServiceName());
}
// If the trackerClient was just recently evicted from quarantine, it is possible that
// the service is already in trouble while the quarantine probing approach works
// fine. In such case we'll reuse the previous waiting duration instead of starting
// from scratch again
quarantine.reset((clk - quarantine.getLastChecked()) > DegraderLoadBalancerStrategyConfig.DEFAULT_QUARANTINE_REENTRY_TIME);
quarantineMap.put(client, quarantine);
// reduce the points to 0 so no real traffic will be used
newPoints = 0;
_log.warn("TrackerClient {} is put into quarantine {}. OverrideDropRate = {}, callCount = {}, latency = {}," + " errorRate = {}", new Object[] { client.getUri(), quarantine, degraderControl.getMaxDropRate(), degraderControl.getCallCount(), degraderControl.getLatency(), degraderControl.getErrorRate() });
quarantineEffect = true;
} else {
_log.error("Quarantine for service {} is full! Could not add {}", oldState.getServiceName(), client);
}
}
}
// client into the recovery program, because we don't want this tracker client to get any traffic.
if (!quarantineEffect && newPoints == 0 && clientWeight > EPSILON) {
// We are choking off traffic to this tracker client.
// Enroll this tracker client in the recovery program so that
// we can make sure it still gets some traffic
Double oldMaxDropRate = clientUpdater.getMaxDropRate();
// set the default recovery level.
newPoints = (int) (initialRecoveryLevel * pointsPerWeight);
// Keep track of the original maxDropRate
if (!newRecoveryMap.containsKey(client)) {
// keep track of this client,
newRecoveryMap.put(client, oldMaxDropRate);
clientUpdater.setMaxDropRate(1.0 - initialRecoveryLevel);
}
}
points.put(clientUri, newPoints);
if (!oldPointsMap.containsKey(clientUri) || oldPointsMap.get(clientUri) != newPoints) {
hashRingChanges = true;
}
}
// if there were changes to the members of the cluster
if ((strategy == PartitionDegraderLoadBalancerState.Strategy.LOAD_BALANCE && hashRingChanges) || oldState.getClusterGenerationId() != clusterGenerationId) {
// atomic overwrite
// try Call Dropping next time we updatePartitionState.
newState = new PartitionDegraderLoadBalancerState(clusterGenerationId, config.getClock().currentTimeMillis(), true, oldState.getRingFactory(), points, PartitionDegraderLoadBalancerState.Strategy.CALL_DROPPING, currentOverrideDropRate, newCurrentAvgClusterLatency, newRecoveryMap, oldState.getServiceName(), oldState.getDegraderProperties(), totalClusterCallCount, quarantineMap, quarantineHistory);
logState(oldState, newState, partitionId, config, trackerClientUpdaters);
} else {
// time to try call dropping strategy, if necessary.
// we are explicitly setting the override drop rate to a number between 0 and 1, inclusive.
double newDropLevel = Math.max(0.0, currentOverrideDropRate);
// to get the cluster latency stabilized
if (newCurrentAvgClusterLatency > 0 && totalClusterCallCount >= config.getMinClusterCallCountHighWaterMark()) {
// statistically significant
if (newCurrentAvgClusterLatency >= config.getHighWaterMark() && currentOverrideDropRate != 1.0) {
// if the cluster latency is too high and we can drop more traffic
newDropLevel = Math.min(1.0, newDropLevel + config.getGlobalStepUp());
} else if (newCurrentAvgClusterLatency <= config.getLowWaterMark() && currentOverrideDropRate != 0.0) {
// else if the cluster latency is good and we can reduce the override drop rate
newDropLevel = Math.max(0.0, newDropLevel - config.getGlobalStepDown());
}
// else the averageClusterLatency is between Low and High, or we can't change anything more,
// then do not change anything.
} else if (newCurrentAvgClusterLatency > 0 && totalClusterCallCount >= config.getMinClusterCallCountLowWaterMark()) {
//but we might recover a bit if the latency is healthy
if (newCurrentAvgClusterLatency <= config.getLowWaterMark() && currentOverrideDropRate != 0.0) {
// the cluster latency is good and we can reduce the override drop rate
newDropLevel = Math.max(0.0, newDropLevel - config.getGlobalStepDown());
}
// else the averageClusterLatency is somewhat high but since the qps is not that high, we shouldn't degrade
} else {
// if we enter here that means we have very low traffic. We should reduce the overrideDropRate, if possible.
// when we have below 1 QPS traffic, we should be pretty confident that the cluster can handle very low
// traffic. Of course this is depending on the MinClusterCallCountLowWaterMark that the service owner sets.
// Another reason is this might have happened if we had somehow choked off all traffic to the cluster, most
// likely in a one node/small cluster scenario. Obviously, we can't check latency here,
// we'll have to rely on the metric in the next updatePartitionState. If the cluster is still having
// latency problems, then we will oscillate between off and letting a little traffic through,
// and that is acceptable. If the latency, though high, is deemed acceptable, then the
// watermarks can be adjusted to let more traffic through.
newDropLevel = Math.max(0.0, newDropLevel - config.getGlobalStepDown());
}
if (newDropLevel != currentOverrideDropRate) {
overrideClusterDropRate(partitionId, newDropLevel, trackerClientUpdaters);
}
// don't change the points map or the recoveryMap, but try load balancing strategy next time.
newState = new PartitionDegraderLoadBalancerState(clusterGenerationId, config.getClock().currentTimeMillis(), true, oldState.getRingFactory(), oldPointsMap, PartitionDegraderLoadBalancerState.Strategy.LOAD_BALANCE, newDropLevel, newCurrentAvgClusterLatency, isQuarantineEnabled ? newRecoveryMap : oldRecoveryMap, oldState.getServiceName(), oldState.getDegraderProperties(), totalClusterCallCount, quarantineMap, quarantineHistory);
logState(oldState, newState, partitionId, config, trackerClientUpdaters);
points = oldPointsMap;
}
// adjust the min call count for each client based on the hash ring reduction and call dropping
// fraction.
overrideMinCallCount(partitionId, currentOverrideDropRate, trackerClientUpdaters, points, pointsPerWeight);
return newState;
}
use of com.linkedin.util.degrader.DegraderControl in project rest.li by linkedin.
the class TrackerClientUpdater method update.
void update() {
DegraderControl degraderControl = _trackerClient.getDegraderControl(_partitionId);
degraderControl.setOverrideDropRate(_overrideDropRate);
degraderControl.setMaxDropRate(_maxDropRate);
degraderControl.setOverrideMinCallCount(_overrideMinCallCount);
}
use of com.linkedin.util.degrader.DegraderControl in project rest.li by linkedin.
the class DegraderLoadBalancerTest method testBalancingRing.
@Test(groups = { "small", "back-end" }, dataProvider = "consistentHashAlgorithms")
public void testBalancingRing(String consistentHashAlgorithm) throws URISyntaxException {
DegraderLoadBalancerStrategyV3 strategy = getStrategy(consistentHashAlgorithm);
List<TrackerClient> clients = new ArrayList<TrackerClient>();
URI uri1 = URI.create("http://someTestService/someTestUrl");
URI uri2 = URI.create("http://abcxfweuoeueoueoueoukeueoueoueoueoueouo/2354");
TestClock clock1 = new TestClock();
TestClock clock2 = new TestClock();
TrackerClient client1 = getClient(uri1, clock1);
TrackerClient client2 = getClient(uri2, clock2);
clients.add(client1);
clients.add(client2);
// force client2 to be disabled
DegraderControl dcClient2Default = client2.getDegraderControl(DEFAULT_PARTITION_ID);
dcClient2Default.setOverrideMinCallCount(1);
dcClient2Default.setMinCallCount(1);
dcClient2Default.setMaxDropRate(1d);
dcClient2Default.setUpStep(0.4d);
dcClient2Default.setHighErrorRate(0);
CallCompletion cc = client2.getCallTracker().startCall();
clock2.addMs(1);
cc.endCallWithError();
clock1.addMs(15000);
clock2.addMs(5000);
// now do a basic verification to verify getTrackerClient is properly weighting things
double calls = 10000d;
int client1Count = 0;
int client2Count = 0;
double tolerance = 0.05d;
for (int i = 0; i < calls; ++i) {
TrackerClient client = getTrackerClient(strategy, null, new RequestContext(), 1, clients);
assertNotNull(client);
if (client.getUri().equals(uri1)) {
++client1Count;
} else {
++client2Count;
}
}
assertTrue(Math.abs((client1Count / calls) - (100 / 160d)) < tolerance);
assertTrue(Math.abs((client2Count / calls) - (60 / 160d)) < tolerance);
}
Aggregations