use of com.sri.ai.grinder.api.Context in project aic-expresso by aic-sri-international.
the class BPTest method main.
public static void main(String[] args) {
Theory theory = new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, false), new LinearRealArithmeticTheory(false, false), new TupleTheory(), new PropositionalTheory());
Context context = new TrueContext(theory);
Model m = IsingModel(3, 4, theory, context, parse("Boolean"));
// printModel(model);
runTest(m);
}
use of com.sri.ai.grinder.api.Context in project aic-expresso by aic-sri-international.
the class FactorComponent method calculate.
public Expression calculate() {
Theory theory = this.model.theory;
Context context = this.model.context;
Expression childrenMessage = parse("{ 1 }");
for (VariableComponent children : this.children) {
childrenMessage = apply(TIMES, childrenMessage, children.calculate());
}
childrenMessage = apply(TIMES, childrenMessage, this.phi);
for (Expression cutset : this.cutsetInsideSubModel) {
// String str = "sum({{ (on " + cutset + " in Boolean ) " + childrenMessage + " }})";
// childrenMessage = parse(str);
// childrenMessage = theory.evaluate(childrenMessage, context);
Expression valuesTakenByVariableToSum = this.model.getValues(cutset);
IndexExpressionsSet indices = new ExtensionalIndexExpressionsSet(apply(IN, cutset, valuesTakenByVariableToSum));
Expression intensionalMultiSet = IntensionalSet.makeMultiSet(indices, childrenMessage, parse("true"));
Expression summation = apply(SUM, intensionalMultiSet);
childrenMessage = summation;
// String str = "sum({{ (on " + variableToSum + " in " + this.model.getValues(variableToSum) +" ) " + childrenMessage + " }})";
// childrenMessage = parse(str);
}
Set<Expression> toSum = model.getNeighbors(phi);
for (Expression e : this.parent) {
toSum.remove(e);
}
toSum.removeAll(this.cutsetOutsideSubModel);
toSum.removeAll(this.cutsetInsideSubModel);
for (Expression variableToSum : toSum) {
Expression expressionToSum = theory.evaluate(childrenMessage, context);
Expression valuesTakenByVariableToSum = this.model.getValues(variableToSum);
IndexExpressionsSet indices = new ExtensionalIndexExpressionsSet(apply(IN, variableToSum, valuesTakenByVariableToSum));
Expression intensionalMultiSet = IntensionalSet.makeMultiSet(indices, expressionToSum, parse("true"));
Expression summation = apply(SUM, intensionalMultiSet);
// String str = "sum({{ (on " + variableToSum + " in " + this.model.getValues(variableToSum) +" ) " + childrenMessage + " }})";
// childrenMessage = parse(str);
childrenMessage = summation;
}
return theory.evaluate(childrenMessage, context);
}
use of com.sri.ai.grinder.api.Context in project aic-expresso by aic-sri-international.
the class VariableComponent method calculateBound.
public void calculateBound() {
Theory theory = this.model.theory;
Context context = this.model.context;
// Expression childrenBound = parse("{ 1 }");
// for (FactorComponent children : this.children) {
// childrenBound = Bounds.boundProduct(theory, context, childrenBound, children.bound);
// }
Bound[] childrenArray = new Bound[children.size()];
int i = 0;
for (FactorComponent children : this.children) {
childrenArray[i] = children.bound;
i++;
}
Bound childrenBound;
if (childrenArray.length != 0) {
childrenBound = Bounds.boundProduct(this.model.theory, this.model.context, isExtensionalBound, childrenArray);
} else {
childrenBound = Bounds.makeSingleElementBound(makeSymbol(1), isExtensionalBound);
}
Iterator<Expression> iteratorToVariables = this.cutsetInsideSubModel.iterator();
ArrayList<Expression> variablesToBeSummedOut = new ArrayList<>(this.cutsetInsideSubModel.size());
for (Expression var : Util.in(iteratorToVariables)) {
variablesToBeSummedOut.add(var);
}
// We want sum other toSum of Phi*childrenBound
DefaultExtensionalUniSet varToSum = new DefaultExtensionalUniSet(variablesToBeSummedOut);
bound = childrenBound.summingBound(varToSum, context, theory);
}
use of com.sri.ai.grinder.api.Context in project aic-expresso by aic-sri-international.
the class VariableComponent method calculate.
public Expression calculate() {
Theory theory = this.model.theory;
Context context = this.model.context;
Expression childrenMessage = parse("1");
for (FactorComponent children : this.children) {
childrenMessage = apply(TIMES, childrenMessage, children.calculate());
childrenMessage = theory.evaluate(childrenMessage, context);
}
for (Expression cutsetVariable : this.cutsetInsideSubModel) {
// childrenMessage = theory.evaluate(childrenMessage, context);
// String str = "sum({{ (on " + cutsetVariable + " in " + this.model.getValues(cutsetVariable) +" ) " + childrenMessage + " }})";
// childrenMessage = parse(str);
Expression valuesTakenByVariableToSum = this.model.getValues(cutsetVariable);
IndexExpressionsSet indices = new ExtensionalIndexExpressionsSet(apply(IN, cutsetVariable, valuesTakenByVariableToSum));
Expression intensionalMultiSet = IntensionalSet.makeMultiSet(indices, childrenMessage, parse("true"));
Expression summation = apply(SUM, intensionalMultiSet);
childrenMessage = summation;
}
return theory.evaluate(childrenMessage, context);
}
use of com.sri.ai.grinder.api.Context in project aic-expresso by aic-sri-international.
the class ClearExampleEvaluation method main.
public static void main(String[] args) {
// /// Evaluating expressions
// The above code shows how to deal with the syntax of expressions.
// Evaluating expressions requires knowing about the semantics, that is, to what functions each operator corresponds to ("+" to addition, etc).
// This is provided by a theory, which for now it suffices to know is a collection of methods for evaluating expressions
// according to an interpretation to some symbols.
Theory theory = new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, false), new LinearRealArithmeticTheory(false, false), new TupleTheory(), new PropositionalTheory());
// Because this evaluation is symbolic, evaluated expressions may involve free variables.
// In this case, the result of the evaluation will be a simplified expression that
// is equivalent to the original expression for all possible assignments to the free variables.
// For example, X + 0*Y is evaluate to X because, for any assignment to (X,Y), X + 0*Y = X.
// true context: all assignments to free variables are of interest
Context context = new TrueContext(theory);
// We will later see how we can use contexts that restrict the free variable assignments of interest.
context = context.makeNewContextWithAddedType(BOOLEAN_TYPE);
context = context.extendWithSymbolsAndTypes("B", "Integer");
context = context.extendWithSymbolsAndTypes("J", "Integer");
// Now that we have a theory and a context, we can evaluate expressions:
println("1 + 0*X + 1 = " + theory.evaluate(parse("1 + 1"), context));
/*evaluate(new String[] {
"sum({{ (on C in Boolean) (if C then if A then 50 else 50 else if A then 50 else 50) * (if C then if B then 60 else 40 else if B then 40 else 60) }})", "",
}, theory, context);
*/
Expression test = theory.evaluate(parse("sum({{ (on C in Boolean) (if C then if A then 50 else 50 else if A then 50 else 50) * (if C then if B then 60 else 40 else if B then 40 else 60) }})"), context);
println(test);
String str = "sum({{ (on I in 1..10) I : I != J }})";
Expression expr = parse(str);
Expression test2 = theory.evaluate(expr, context);
println(test2);
// Here's how to do it from scratch, but see next the way we typically actually do it.
Expression p = makeSymbol("P");
context = context.extendWithSymbolsAndTypes("P", "Integer");
IndexExpressionsSet indices = new ExtensionalIndexExpressionsSet(apply(IN, p, parse("1..4")));
println("plop");
// The "extensional" in ExtensionalIndexExpressionsSet means that the list/set of indices is extensionally defined,
// even though they will be the indices of an intensionally defined set.
Expression intensionalUniSet = // IntensionalSet.intensionalUniSet, or simply intensionalUniSet, also works
IntensionalSet.makeMultiSet(indices, parse("5"), parse("true"));
// Note that Equality.make(p, "Rodrigo") is the same as apply(FunctorConstants.EQUAL, p, "Rodrigo").
// We often have 'make' methods for many operators: And.make, Or.make and so on.
// packages in com.sri.ai.expresso.grinder.sgdpllt.library have many such operator-specific classes.
println(intensionalUniSet);
Expression sum = apply(SUM, intensionalUniSet);
println(sum);
Expression resultat = theory.evaluate(sum, context);
println(resultat);
}
Aggregations