use of com.sri.ai.grinder.theory.base.UnificationStepSolver in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method equalityTest.
@Test
public void equalityTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new EqualityTheory(true, true));
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("X", TESTING_CATEGORICAL_TYPE, "Y", TESTING_CATEGORICAL_TYPE, "Z", TESTING_CATEGORICAL_TYPE, "unary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_eq(X)"), parse("unary_eq(X)"));
StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(X)"), parse("unary_eq(Y)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("X = Y"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(true).step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIs(true).step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).getValue());
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = a and Y = b"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(X)"), parse("unary_eq(a)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = a"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = b"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("binary_eq(X, unary_eq(X))"), parse("binary_eq(unary_eq(Y), Y)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("X = unary_eq(Y)"), step.getSplitter());
}
use of com.sri.ai.grinder.theory.base.UnificationStepSolver in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method differenceArithmeticTest.
@Test
public void differenceArithmeticTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new DifferenceArithmeticTheory(true, true));
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("I", TESTING_INTEGER_INTERVAL_TYPE, "J", TESTING_INTEGER_INTERVAL_TYPE, "K", TESTING_INTEGER_INTERVAL_TYPE, "unary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "binary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(I)"));
StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(J)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("I = J"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(true).step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIs(true).step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).getValue());
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0 and J = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(0)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
}
use of com.sri.ai.grinder.theory.base.UnificationStepSolver in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method advancedEqualityTest.
@Ignore("TODO - context implementation currently does not support these more advanced/indirect comparisons")
@Test
public void advancedEqualityTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new EqualityTheory(false, true));
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("X", TESTING_CATEGORICAL_TYPE, "Y", TESTING_CATEGORICAL_TYPE, "Z", TESTING_CATEGORICAL_TYPE, "unary_eq/1", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq/2", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("binary_eq(X, unary_eq(X))"), parse("binary_eq(unary_eq(Y), Y)"));
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = b and Y = a and unary_eq(Y) = b and unary_eq(X) = a"), rootContext);
StepSolver.Step<Boolean> step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = a and Y = a and unary_eq(Y) = b and unary_eq(X) = a"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = b and Y = a and unary_eq(a) = b and unary_eq(b) = a"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
}
use of com.sri.ai.grinder.theory.base.UnificationStepSolver in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method propositionalTest.
@Test
public void propositionalTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new PropositionalTheory());
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("P", BOOLEAN_TYPE, "Q", BOOLEAN_TYPE, "R", BOOLEAN_TYPE, "unary_prop/1", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE), "binary_prop/2", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE, BOOLEAN_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(P)"));
StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(Q)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("P = Q"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(true).step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIs(true).step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).getValue());
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and not Q"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(true)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("binary_prop(P, unary_prop(P))"), parse("binary_prop(unary_prop(Q), Q)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("P = unary_prop(Q)"), step.getSplitter());
// Ignore: PropositionalTheory will only deal with symbol variables for now
// localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P and Q and not unary_prop(Q) and unary_prop(P)"), rootContext);
// step = unificationStepSolver.step(localTestContext);
// Assert.assertEquals(false, step.itDepends());
// Assert.assertEquals(true, step.getValue());
// localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and Q and not unary_prop(Q) and unary_prop(P)"), rootContext);
// step = unificationStepSolver.step(localTestContext);
// Assert.assertEquals(false, step.itDepends());
// Assert.assertEquals(false, step.getValue());
// Now test out individual branches
unificationStepSolver = new UnificationStepSolver(parse("binary_prop(P, unary_prop(P))"), parse("binary_prop(unary_prop(Q), Q)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(parse("P = unary_prop(Q)"), step.getSplitter());
StepSolver<Boolean> falseItDependsSolver = step.getStepSolverForWhenSplitterIs(false);
Assert.assertEquals(false, falseItDependsSolver.step(rootContext).itDepends());
Assert.assertEquals(false, falseItDependsSolver.step(rootContext).getValue());
StepSolver<Boolean> trueItDependsSolver = step.getStepSolverForWhenSplitterIs(true);
localTestContext = rootContext.conjoin(parse("P"), rootContext);
step = trueItDependsSolver.step(localTestContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(parse("P = unary_prop(Q)"), step.getSplitter());
falseItDependsSolver = step.getStepSolverForWhenSplitterIs(false);
Assert.assertEquals(false, falseItDependsSolver.step(rootContext).itDepends());
Assert.assertEquals(false, falseItDependsSolver.step(rootContext).getValue());
// Ignore: PropositionalTheory will only deal with symbol variables for now
// localTestContext = localTestContext.conjoin(parse("unary_prop(Q)"), localTestContext);
// step = trueItDependsSolver.step(localTestContext);
// Assert.assertEquals(true, step.itDepends());
// Assert.assertEquals(parse("unary_prop(P) = Q"), step.getSplitter());
falseItDependsSolver = step.getStepSolverForWhenSplitterIs(false);
Assert.assertEquals(false, falseItDependsSolver.step(rootContext).itDepends());
Assert.assertEquals(false, falseItDependsSolver.step(rootContext).getValue());
// Ignore: PropositionalTheory will only deal with symbol variables for now
// localTestContext = localTestContext.conjoin(parse("unary_prop(P)"), localTestContext);
// step = trueItDependsSolver.step(localTestContext);
// Assert.assertEquals(true, step.itDepends());
// Assert.assertEquals(parse("unary_prop(P) = Q"), step.getSplitter());
falseItDependsSolver = step.getStepSolverForWhenSplitterIs(false);
Assert.assertEquals(false, falseItDependsSolver.step(rootContext).itDepends());
Assert.assertEquals(false, falseItDependsSolver.step(rootContext).getValue());
// Ignore: PropositionalTheory will only deal with symbol variables for now
// localTestContext = localTestContext.conjoin(parse("Q"), localTestContext);
// step = trueItDependsSolver.step(localTestContext);
// Assert.assertEquals(false, step.itDepends());
// Assert.assertEquals(true, step.getValue());
}
use of com.sri.ai.grinder.theory.base.UnificationStepSolver in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method compoundTest.
@Test
public void compoundTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new LinearRealArithmeticTheory(false, true), new PropositionalTheory()));
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("P", BOOLEAN_TYPE, "Q", BOOLEAN_TYPE, "R", BOOLEAN_TYPE, "unary_prop", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE), "binary_prop", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE, BOOLEAN_TYPE), "S", TESTING_CATEGORICAL_TYPE, "T", TESTING_CATEGORICAL_TYPE, "U", TESTING_CATEGORICAL_TYPE, "unary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "I", TESTING_INTEGER_INTERVAL_TYPE, "J", TESTING_INTEGER_INTERVAL_TYPE, "K", TESTING_INTEGER_INTERVAL_TYPE, "unary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "binary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "X", TESTING_REAL_INTERVAL_TYPE, "Y", TESTING_REAL_INTERVAL_TYPE, "Z", TESTING_REAL_INTERVAL_TYPE, "unary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE), "binary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(P)"));
StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(Q)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("P = Q"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(true).step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIs(true).step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).getValue());
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and not Q"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(true)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
//
//
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(S)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(T)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("S = T"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(true).step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIs(true).step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = a and T = b"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(a)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = a"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = b"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
//
//
unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(I)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(J)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("I = J"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(true).step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIs(true).step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0 and J = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(0)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
//
//
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(X)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(Y)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("X = Y"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(true).step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIs(true).step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0 and Y = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(0)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
}
Aggregations