Search in sources :

Example 31 with PropositionalTheory

use of com.sri.ai.grinder.theory.propositional.PropositionalTheory in project aic-expresso by aic-sri-international.

the class EvaluationTest method testEvaluationOfQuantifiedExpressions.

@Test
public void testEvaluationOfQuantifiedExpressions() {
    TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new PropositionalTheory()));
    Map<String, Type> variablesAndTypes = new LinkedHashMap<>(theoryTestingSupport.getVariableNamesAndTypesForTesting());
    Type booleanType = variablesAndTypes.get("P");
    variablesAndTypes.put("S", booleanType);
    variablesAndTypes.put("T", booleanType);
    variablesAndTypes.put("U", booleanType);
    theoryTestingSupport.setVariableNamesAndTypesForTesting(variablesAndTypes);
    Context context = theoryTestingSupport.makeContextWithTestingInformation();
    String expressionString;
    Expression expected;
    expressionString = "for all I in 1..10 : (I != 4 or I = 4) and P";
    expected = parse("P");
    runTest(expressionString, expected, context);
    // the following example tests that quantified expressions that are function arguments get evaluated properly, as there once was a bug preventing it
    expressionString = "not(for all I in 1..10 : (I != 4 or I = 4))";
    expected = parse("false");
    runTest(expressionString, expected, context);
    expressionString = "for all I in 1..10 : for all J in 1..2 : I != 4";
    expected = parse("false");
    runTest(expressionString, expected, context);
    expressionString = "for all I in 1..10 : for all P in Boolean : I != 4 or I = 4 and (P or not P)";
    expected = parse("true");
    runTest(expressionString, expected, context);
    expressionString = "there exists I in 1..10 : I != 4 and P";
    expected = parse("P");
    runTest(expressionString, expected, context);
    expressionString = "there exists I in 1..10 : there exists J in 1..2 : I != 4 and J != 1";
    expected = parse("true");
    runTest(expressionString, expected, context);
    expressionString = "there exists I in 1..10 : there exists P in Boolean : I != 4 and P";
    expected = parse("true");
    runTest(expressionString, expected, context);
}
Also used : Context(com.sri.ai.grinder.api.Context) EqualityTheory(com.sri.ai.grinder.theory.equality.EqualityTheory) Type(com.sri.ai.expresso.api.Type) Expression(com.sri.ai.expresso.api.Expression) TheoryTestingSupport(com.sri.ai.grinder.tester.TheoryTestingSupport) DifferenceArithmeticTheory(com.sri.ai.grinder.theory.differencearithmetic.DifferenceArithmeticTheory) PropositionalTheory(com.sri.ai.grinder.theory.propositional.PropositionalTheory) CompoundTheory(com.sri.ai.grinder.theory.compound.CompoundTheory) LinkedHashMap(java.util.LinkedHashMap) Test(org.junit.Test)

Example 32 with PropositionalTheory

use of com.sri.ai.grinder.theory.propositional.PropositionalTheory in project aic-expresso by aic-sri-international.

the class EvaluationTest method testEvaluationOfGroupOperationsOnSets.

@Test
public void testEvaluationOfGroupOperationsOnSets() {
    TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new PropositionalTheory()));
    Map<String, Type> variablesAndTypes = new LinkedHashMap<>(theoryTestingSupport.getVariableNamesAndTypesForTesting());
    Type booleanType = variablesAndTypes.get("P");
    variablesAndTypes.put("S", booleanType);
    variablesAndTypes.put("T", booleanType);
    variablesAndTypes.put("U", booleanType);
    theoryTestingSupport.setVariableNamesAndTypesForTesting(variablesAndTypes);
    Context context = theoryTestingSupport.makeContextWithTestingInformation();
    String expressionString;
    Expression expected;
    expressionString = "sum( {{ (on I in 1..10) 3 : I != 4 and P }} )";
    expected = parse("if P then 27 else 0");
    runTest(expressionString, expected, context);
    expressionString = "sum( {{ (on ) 3 : I != 4 and P }} )";
    expected = parse("if I != 4 then if P then 3 else 0 else 0");
    runTest(expressionString, expected, context);
    expressionString = "sum( {{ (on ) 3 : P and not P }} )";
    expected = parse("0");
    runTest(expressionString, expected, context);
    expressionString = "sum( {{ (on I in 1..10, J in 1..2) 3 : I != 4 }} )";
    expected = parse("54");
    runTest(expressionString, expected, context);
    expressionString = "sum( {{ (on I in 1..10, P in Boolean) 3 : I != 4 }} )";
    expected = parse("54");
    runTest(expressionString, expected, context);
    expressionString = "max( {{ (on I in 1..10) 3 : I != 4 and P }} )";
    expected = parse("if P then 3 else -infinity");
    runTest(expressionString, expected, context);
    expressionString = "max( {{ (on ) 3 : I != 4 and P }} )";
    expected = parse("if I != 4 then if P then 3 else -infinity else -infinity");
    runTest(expressionString, expected, context);
    expressionString = "max( {{ (on ) 3 : P and not P }} )";
    expected = parse("-infinity");
    runTest(expressionString, expected, context);
    expressionString = "max( {{ (on I in 1..10, J in 1..2) 3 : I != 4 }} )";
    expected = parse("3");
    runTest(expressionString, expected, context);
    expressionString = "max( {{ (on I in 1..10, P in Boolean) 3 : I != 4 }} )";
    expected = parse("3");
    runTest(expressionString, expected, context);
}
Also used : Context(com.sri.ai.grinder.api.Context) EqualityTheory(com.sri.ai.grinder.theory.equality.EqualityTheory) Type(com.sri.ai.expresso.api.Type) Expression(com.sri.ai.expresso.api.Expression) TheoryTestingSupport(com.sri.ai.grinder.tester.TheoryTestingSupport) DifferenceArithmeticTheory(com.sri.ai.grinder.theory.differencearithmetic.DifferenceArithmeticTheory) PropositionalTheory(com.sri.ai.grinder.theory.propositional.PropositionalTheory) CompoundTheory(com.sri.ai.grinder.theory.compound.CompoundTheory) LinkedHashMap(java.util.LinkedHashMap) Test(org.junit.Test)

Example 33 with PropositionalTheory

use of com.sri.ai.grinder.theory.propositional.PropositionalTheory in project aic-expresso by aic-sri-international.

the class RecursiveTest method runTest.

private void runTest(Rewriter rewriter, Expression initial, Expression expected, Map<Expression, Expression> symbolsAndTypes) {
    CompoundTheory theory = new CompoundTheory(new PropositionalTheory(), new DifferenceArithmeticTheory(false, true));
    Context context = new TrueContext(theory);
    context = context.makeCloneWithAdditionalRegisteredSymbolsAndTypes(symbolsAndTypes);
    Rewriter recursive = new Recursive(rewriter);
    Expression solution = recursive.apply(initial, context);
    System.out.println("Solution: " + solution);
    assertEquals(expected, solution);
}
Also used : TrueContext(com.sri.ai.grinder.core.TrueContext) Context(com.sri.ai.grinder.api.Context) Expression(com.sri.ai.expresso.api.Expression) DifferenceArithmeticTheory(com.sri.ai.grinder.theory.differencearithmetic.DifferenceArithmeticTheory) Rewriter(com.sri.ai.grinder.rewriter.api.Rewriter) PropositionalTheory(com.sri.ai.grinder.theory.propositional.PropositionalTheory) CompoundTheory(com.sri.ai.grinder.theory.compound.CompoundTheory) Recursive(com.sri.ai.grinder.rewriter.core.Recursive) TrueContext(com.sri.ai.grinder.core.TrueContext)

Example 34 with PropositionalTheory

use of com.sri.ai.grinder.theory.propositional.PropositionalTheory in project aic-expresso by aic-sri-international.

the class UnificationStepSolverTest method propositionalTest.

@Test
public void propositionalTest() {
    TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new PropositionalTheory());
    // NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
    theoryTestingSupport.setVariableNamesAndTypesForTesting(map("P", BOOLEAN_TYPE, "Q", BOOLEAN_TYPE, "R", BOOLEAN_TYPE, "unary_prop/1", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE), "binary_prop/2", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE, BOOLEAN_TYPE)));
    Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
    UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(P)"));
    StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(Q)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("P = Q"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(true).step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIs(true).step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).getValue());
    Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and not Q"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(true)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("binary_prop(P, unary_prop(P))"), parse("binary_prop(unary_prop(Q), Q)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("P = unary_prop(Q)"), step.getSplitter());
    // Ignore: PropositionalTheory will only deal with symbol variables for now
    // localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P and Q and not unary_prop(Q) and unary_prop(P)"), rootContext);
    // step = unificationStepSolver.step(localTestContext);
    // Assert.assertEquals(false,  step.itDepends());
    // Assert.assertEquals(true, step.getValue());
    // localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and Q and not unary_prop(Q) and unary_prop(P)"), rootContext);
    // step = unificationStepSolver.step(localTestContext);
    // Assert.assertEquals(false,  step.itDepends());
    // Assert.assertEquals(false, step.getValue());
    // Now test out individual branches
    unificationStepSolver = new UnificationStepSolver(parse("binary_prop(P, unary_prop(P))"), parse("binary_prop(unary_prop(Q), Q)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(parse("P = unary_prop(Q)"), step.getSplitter());
    StepSolver<Boolean> falseItDependsSolver = step.getStepSolverForWhenSplitterIs(false);
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).itDepends());
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).getValue());
    StepSolver<Boolean> trueItDependsSolver = step.getStepSolverForWhenSplitterIs(true);
    localTestContext = rootContext.conjoin(parse("P"), rootContext);
    step = trueItDependsSolver.step(localTestContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(parse("P = unary_prop(Q)"), step.getSplitter());
    falseItDependsSolver = step.getStepSolverForWhenSplitterIs(false);
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).itDepends());
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).getValue());
    // Ignore: PropositionalTheory will only deal with symbol variables for now
    // localTestContext = localTestContext.conjoin(parse("unary_prop(Q)"), localTestContext);
    // step = trueItDependsSolver.step(localTestContext);
    // Assert.assertEquals(true,  step.itDepends());
    // Assert.assertEquals(parse("unary_prop(P) = Q"), step.getSplitter());
    falseItDependsSolver = step.getStepSolverForWhenSplitterIs(false);
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).itDepends());
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).getValue());
    // Ignore: PropositionalTheory will only deal with symbol variables for now
    // localTestContext = localTestContext.conjoin(parse("unary_prop(P)"), localTestContext);
    // step = trueItDependsSolver.step(localTestContext);
    // Assert.assertEquals(true,  step.itDepends());
    // Assert.assertEquals(parse("unary_prop(P) = Q"), step.getSplitter());
    falseItDependsSolver = step.getStepSolverForWhenSplitterIs(false);
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).itDepends());
    Assert.assertEquals(false, falseItDependsSolver.step(rootContext).getValue());
// Ignore: PropositionalTheory will only deal with symbol variables for now
// localTestContext = localTestContext.conjoin(parse("Q"), localTestContext);
// step = trueItDependsSolver.step(localTestContext);
// Assert.assertEquals(false,  step.itDepends());
// Assert.assertEquals(true, step.getValue());
}
Also used : Context(com.sri.ai.grinder.api.Context) TheoryTestingSupport(com.sri.ai.grinder.tester.TheoryTestingSupport) FunctionType(com.sri.ai.expresso.type.FunctionType) PropositionalTheory(com.sri.ai.grinder.theory.propositional.PropositionalTheory) StepSolver(com.sri.ai.grinder.api.StepSolver) UnificationStepSolver(com.sri.ai.grinder.theory.base.UnificationStepSolver) UnificationStepSolver(com.sri.ai.grinder.theory.base.UnificationStepSolver) Test(org.junit.Test)

Example 35 with PropositionalTheory

use of com.sri.ai.grinder.theory.propositional.PropositionalTheory in project aic-expresso by aic-sri-international.

the class UnificationStepSolverTest method compoundTest.

@Test
public void compoundTest() {
    TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new LinearRealArithmeticTheory(false, true), new PropositionalTheory()));
    // NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
    theoryTestingSupport.setVariableNamesAndTypesForTesting(map("P", BOOLEAN_TYPE, "Q", BOOLEAN_TYPE, "R", BOOLEAN_TYPE, "unary_prop", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE), "binary_prop", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE, BOOLEAN_TYPE), "S", TESTING_CATEGORICAL_TYPE, "T", TESTING_CATEGORICAL_TYPE, "U", TESTING_CATEGORICAL_TYPE, "unary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "I", TESTING_INTEGER_INTERVAL_TYPE, "J", TESTING_INTEGER_INTERVAL_TYPE, "K", TESTING_INTEGER_INTERVAL_TYPE, "unary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "binary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "X", TESTING_REAL_INTERVAL_TYPE, "Y", TESTING_REAL_INTERVAL_TYPE, "Z", TESTING_REAL_INTERVAL_TYPE, "unary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE), "binary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE)));
    Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
    UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(P)"));
    StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(Q)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("P = Q"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(true).step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIs(true).step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).getValue());
    Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and not Q"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(true)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    // 
    // 
    unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(S)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(T)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("S = T"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(true).step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIs(true).step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = a and T = b"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(a)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = a"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = b"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    // 
    // 
    unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(I)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(J)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("I = J"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(true).step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIs(true).step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0 and J = 1"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(0)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 1"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    // 
    // 
    unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(X)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(Y)"));
    step = unificationStepSolver.step(rootContext);
    Assert.assertEquals(true, step.itDepends());
    Assert.assertEquals(Expressions.parse("X = Y"), step.getSplitter());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(true).step(rootContext).itDepends());
    Assert.assertEquals(true, step.getStepSolverForWhenSplitterIs(true).step(rootContext).getValue());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).itDepends());
    Assert.assertEquals(false, step.getStepSolverForWhenSplitterIs(false).step(rootContext).getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0 and Y = 1"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
    unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(0)"));
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(true, step.getValue());
    localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 1"), rootContext);
    step = unificationStepSolver.step(localTestContext);
    Assert.assertEquals(false, step.itDepends());
    Assert.assertEquals(false, step.getValue());
}
Also used : Context(com.sri.ai.grinder.api.Context) EqualityTheory(com.sri.ai.grinder.theory.equality.EqualityTheory) TheoryTestingSupport(com.sri.ai.grinder.tester.TheoryTestingSupport) DifferenceArithmeticTheory(com.sri.ai.grinder.theory.differencearithmetic.DifferenceArithmeticTheory) FunctionType(com.sri.ai.expresso.type.FunctionType) LinearRealArithmeticTheory(com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory) PropositionalTheory(com.sri.ai.grinder.theory.propositional.PropositionalTheory) CompoundTheory(com.sri.ai.grinder.theory.compound.CompoundTheory) StepSolver(com.sri.ai.grinder.api.StepSolver) UnificationStepSolver(com.sri.ai.grinder.theory.base.UnificationStepSolver) UnificationStepSolver(com.sri.ai.grinder.theory.base.UnificationStepSolver) Test(org.junit.Test)

Aggregations

PropositionalTheory (com.sri.ai.grinder.theory.propositional.PropositionalTheory)39 CompoundTheory (com.sri.ai.grinder.theory.compound.CompoundTheory)33 DifferenceArithmeticTheory (com.sri.ai.grinder.theory.differencearithmetic.DifferenceArithmeticTheory)32 EqualityTheory (com.sri.ai.grinder.theory.equality.EqualityTheory)30 Context (com.sri.ai.grinder.api.Context)25 Expression (com.sri.ai.expresso.api.Expression)23 TrueContext (com.sri.ai.grinder.core.TrueContext)19 TheoryTestingSupport (com.sri.ai.grinder.tester.TheoryTestingSupport)18 Test (org.junit.Test)17 LinearRealArithmeticTheory (com.sri.ai.grinder.theory.linearrealarithmetic.LinearRealArithmeticTheory)16 Theory (com.sri.ai.grinder.api.Theory)11 TupleTheory (com.sri.ai.grinder.theory.tuple.TupleTheory)11 Type (com.sri.ai.expresso.api.Type)8 LinkedHashMap (java.util.LinkedHashMap)6 FunctionType (com.sri.ai.expresso.type.FunctionType)4 StepSolver (com.sri.ai.grinder.api.StepSolver)4 AbstractTheoryTestingSupport (com.sri.ai.grinder.core.constraint.AbstractTheoryTestingSupport)4 Rewriter (com.sri.ai.grinder.rewriter.api.Rewriter)4 UnificationStepSolver (com.sri.ai.grinder.theory.base.UnificationStepSolver)4 Before (org.junit.Before)4