use of com.sun.source.tree.AssignmentTree in project error-prone by google.
the class DefaultCharset method variableTypeFix.
private void variableTypeFix(SuggestedFix.Builder fix, VisitorState state, Class<?> original, Class<?> replacement) {
Tree parent = state.getPath().getParentPath().getLeaf();
Symbol sym;
switch(parent.getKind()) {
case VARIABLE:
sym = ASTHelpers.getSymbol((VariableTree) parent);
break;
case ASSIGNMENT:
sym = ASTHelpers.getSymbol(((AssignmentTree) parent).getVariable());
break;
default:
return;
}
if (!ASTHelpers.isSameType(sym.type, state.getTypeFromString(original.getCanonicalName()), state)) {
return;
}
state.getPath().getCompilationUnit().accept(new TreeScanner<Void, Void>() {
@Override
public Void visitVariable(VariableTree node, Void aVoid) {
if (sym.equals(ASTHelpers.getSymbol(node))) {
fix.replace(node.getType(), replacement.getSimpleName()).addImport(replacement.getCanonicalName());
}
return null;
}
}, null);
}
use of com.sun.source.tree.AssignmentTree in project groovy-cps by cloudbees.
the class Translator method translateMethod.
/**
* @param e
* Method in {@code fqcn} to translate.
*/
private void translateMethod(final CompilationUnitTree cut, ExecutableElement e, JDefinedClass $output, String fqcn, String overloadResolved) {
String methodName = n(e);
boolean isPublic = e.getModifiers().contains(Modifier.PUBLIC);
JMethod delegating = $output.method(isPublic ? JMod.PUBLIC | JMod.STATIC : JMod.STATIC, (JType) null, methodName);
JMethod m = $output.method(JMod.PRIVATE | JMod.STATIC, (JType) null, overloadResolved);
Map<String, JTypeVar> typeVars = new HashMap<>();
e.getTypeParameters().forEach(p -> {
String name = n(p);
JTypeVar typeVar = delegating.generify(name);
JTypeVar typeVar2 = m.generify(name);
p.getBounds().forEach(b -> {
JClass binding = (JClass) t(b, typeVars);
typeVar.bound(binding);
typeVar2.bound(binding);
});
typeVars.put(name, typeVar);
});
JType type = t(e.getReturnType(), typeVars);
delegating.type(type);
m.type(type);
List<JVar> delegatingParams = new ArrayList<>();
List<JVar> params = new ArrayList<>();
e.getParameters().forEach(p -> {
JType paramType = t(p.asType(), typeVars);
delegatingParams.add(e.isVarArgs() && p == e.getParameters().get(e.getParameters().size() - 1) ? delegating.varParam(paramType.elementType(), n(p)) : delegating.param(paramType, n(p)));
params.add(m.param(paramType, n(p)));
});
e.getThrownTypes().forEach(ex -> {
delegating._throws((JClass) t(ex));
m._throws((JClass) t(ex));
});
boolean returnsVoid = e.getReturnType().getKind() == TypeKind.VOID;
if (isPublic) {
// preamble
/*
If the call to this method happen outside CPS code, execute normally via DefaultGroovyMethods
*/
delegating.body()._if(JOp.cand(JOp.not($Caller.staticInvoke("isAsynchronous").tap(inv -> {
inv.arg(delegatingParams.get(0));
inv.arg(methodName);
for (int i = 1; i < delegatingParams.size(); i++) inv.arg(delegatingParams.get(i));
})), JOp.not($Caller.staticInvoke("isAsynchronous").arg($output.dotclass()).arg(methodName).args(params))))._then().tap(blk -> {
JClass $WhateverGroovyMethods = codeModel.ref(fqcn);
JInvocation forward = $WhateverGroovyMethods.staticInvoke(methodName).args(delegatingParams);
if (returnsVoid) {
blk.add(forward);
blk._return();
} else {
blk._return(forward);
}
});
}
JInvocation delegateCall = $output.staticInvoke(overloadResolved);
if (returnsVoid) {
delegating.body().add(delegateCall);
} else {
delegating.body()._return(delegateCall);
}
delegatingParams.forEach(p -> delegateCall.arg(p));
JVar $b = m.body().decl($Builder, "b", JExpr._new($Builder).arg(JExpr.invoke("loc").arg(methodName)).invoke("contextualize").arg(codeModel.ref("com.cloudbees.groovy.cps.sandbox.Trusted").staticRef("INSTANCE")));
JInvocation f = JExpr._new($CpsFunction);
// parameter names
f.arg(codeModel.ref(Arrays.class).staticInvoke("asList").tap(inv -> {
e.getParameters().forEach(p -> inv.arg(n(p)));
}));
// translate the method body into an expression that invokes Builder
f.arg(trees.getTree(e).getBody().accept(new SimpleTreeVisitor<JExpression, Void>() {
private JExpression visit(Tree t) {
if (t == null)
return JExpr._null();
return visit(t, null);
}
/**
* Maps a symbol to its source location.
*/
private JExpression loc(Tree t) {
long pos = trees.getSourcePositions().getStartPosition(cut, t);
return JExpr.lit((int) cut.getLineMap().getLineNumber(pos));
}
@Override
public JExpression visitWhileLoop(WhileLoopTree wt, Void __) {
return $b.invoke("while_").arg(// TODO: label
JExpr._null()).arg(visit(wt.getCondition())).arg(visit(wt.getStatement()));
}
@Override
public JExpression visitMethodInvocation(MethodInvocationTree mt, Void __) {
ExpressionTree ms = mt.getMethodSelect();
JInvocation inv;
if (ms instanceof MemberSelectTree) {
MemberSelectTree mst = (MemberSelectTree) ms;
// of the other known translated classes.
if (mst.getExpression() instanceof JCIdent && !((JCIdent) mst.getExpression()).sym.toString().equals(fqcn) && otherTranslated.containsKey(((JCIdent) mst.getExpression()).sym.toString())) {
inv = $b.invoke("functionCall").arg(loc(mt)).arg($b.invoke("constant").arg(otherTranslated.get(((JCIdent) mst.getExpression()).sym.toString()).dotclass())).arg(n(mst.getIdentifier()));
} else {
inv = $b.invoke("functionCall").arg(loc(mt)).arg(visit(mst.getExpression())).arg(n(mst.getIdentifier()));
}
} else if (ms instanceof JCIdent) {
// invocation without object selection, like foo(bar,zot)
JCIdent it = (JCIdent) ms;
if (!it.sym.owner.toString().equals(fqcn)) {
if (otherTranslated.containsKey(it.sym.owner.toString())) {
// static import from transformed class
inv = $b.invoke("functionCall").arg(loc(mt)).arg($b.invoke("constant").arg(otherTranslated.get(it.sym.owner.toString()).dotclass())).arg(n(it));
} else {
// static import from non-transformed class
inv = $b.invoke("functionCall").arg(loc(mt)).arg($b.invoke("constant").arg(t(it.sym.owner.type).dotclass())).arg(n(it));
}
} else {
// invocation on this class
String overloadResolved = mangledName((Symbol.MethodSymbol) it.sym);
Optional<? extends Element> callSite = elements.getTypeElement(fqcn).getEnclosedElements().stream().filter(e -> e.getKind() == ElementKind.METHOD && mangledName((ExecutableElement) e).equals(overloadResolved)).findAny();
if (callSite.isPresent()) {
ExecutableElement e = (ExecutableElement) callSite.get();
if (e.getModifiers().contains(Modifier.PUBLIC) && !e.isVarArgs() && !e.getParameters().stream().anyMatch(p -> types.isAssignable(p.asType(), closureType))) {
// Delegate to the standard version.
inv = $b.invoke("staticCall").arg(loc(mt)).arg(t(it.sym.owner.type).dotclass()).arg(n(e));
} else if (overloadsResolved.containsKey(overloadResolved)) {
// Private, so delegate to our mangled version.
// TODO add a String parameter to each internal helper method for the expected methodName to pass to CpsCallableInvocation.<init>
// (It could be improved to take a parameter for the name under which we expect methodCall to be invoking it.
// Usually just `each`, but might be `$each__java_util_Iterable__groovy_lang_Closure` for the case that one DGM method is delegating to another.
// See comment in ContinuationGroup, where we are unable to enforce continuation name mismatches in this case.)
inv = $b.invoke("staticCall").arg(loc(mt)).arg($output.dotclass()).arg(overloadResolved);
} else {
throw new IllegalStateException("Not yet translating a " + e.getModifiers() + " method; translatable.txt might need to include: " + fqcn + "." + e);
}
} else {
throw new IllegalStateException("Could not find self-call site " + overloadResolved + " for " + mt);
}
}
} else {
// TODO: figure out what can come here
throw new UnsupportedOperationException(ms.toString());
}
mt.getArguments().forEach(a -> inv.arg(visit(a)));
return inv;
}
@Override
public JExpression visitVariable(VariableTree vt, Void __) {
return $b.invoke("declareVariable").arg(loc(vt)).arg(cpsTypeTranslation(erasure(vt))).arg(n(vt)).arg(visit(vt.getInitializer()));
}
@Override
public JExpression visitIdentifier(IdentifierTree it, Void __) {
JCIdent idt = (JCIdent) it;
return idt.sym.accept(new DefaultSymbolVisitor<JExpression, Void>() {
@Override
public JExpression visitClassSymbol(ClassSymbol cs, Void __) {
return $b.invoke("constant").arg(t(cs.asType()).dotclass());
}
@Override
public JExpression visitVarSymbol(VarSymbol s, Void __) {
return $b.invoke("localVariable").arg(n(s.name));
}
@Override
public JExpression visitSymbol(Symbol s, Void __) {
throw new UnsupportedOperationException(s.toString());
}
}, __);
}
@Override
public JExpression visitBlock(BlockTree bt, Void __) {
JInvocation inv = $b.invoke("block");
bt.getStatements().forEach(s -> inv.arg(visit(s)));
return inv;
}
@Override
public JExpression visitReturn(ReturnTree rt, Void __) {
return $b.invoke("return_").arg(visit(rt.getExpression()));
}
/**
* When used outside {@link MethodInvocationTree}, this is property access.
*/
@Override
public JExpression visitMemberSelect(MemberSelectTree mt, Void __) {
return $b.invoke("property").arg(loc(mt)).arg(visit(mt.getExpression())).arg(n(mt.getIdentifier()));
}
@Override
public JExpression visitTypeCast(TypeCastTree tt, Void __) {
return $b.invoke("cast").arg(loc(tt)).arg(visit(tt.getExpression())).arg(erasure(tt.getType()).dotclass()).arg(JExpr.lit(false));
}
@Override
public JExpression visitIf(IfTree it, Void __) {
JInvocation inv = $b.invoke("if_").arg(visit(it.getCondition())).arg(visit(it.getThenStatement()));
if (it.getElseStatement() != null)
inv.arg(visit(it.getElseStatement()));
return inv;
}
@Override
public JExpression visitNewClass(NewClassTree nt, Void __) {
// TODO: outer class
if (nt.getEnclosingExpression() != null)
throw new UnsupportedOperationException();
return $b.invoke("new_").tap(inv -> {
inv.arg(loc(nt));
inv.arg(cpsTypeTranslation(t(((JCTree) nt).type)));
nt.getArguments().forEach(et -> inv.arg(visit(et)));
});
}
@Override
public JExpression visitExpressionStatement(ExpressionStatementTree et, Void __) {
return visit(et.getExpression());
}
@Override
public JExpression visitLiteral(LiteralTree lt, Void __) {
return $b.invoke("constant").arg(JExpr.literal(lt.getValue()));
}
@Override
public JExpression visitParenthesized(ParenthesizedTree pt, Void __) {
return visit(pt.getExpression());
}
@Override
public JExpression visitBinary(BinaryTree bt, Void __) {
return $b.invoke(opName(bt.getKind())).arg(loc(bt)).arg(visit(bt.getLeftOperand())).arg(visit(bt.getRightOperand()));
}
@Override
public JExpression visitUnary(UnaryTree ut, Void __) {
return $b.invoke(opName(ut.getKind())).arg(loc(ut)).arg(visit(ut.getExpression()));
}
@Override
public JExpression visitCompoundAssignment(CompoundAssignmentTree ct, Void __) {
return $b.invoke(opName(ct.getKind())).arg(loc(ct)).arg(visit(ct.getVariable())).arg(visit(ct.getExpression()));
}
private String opName(Kind kind) {
switch(kind) {
case EQUAL_TO:
return "compareEqual";
case NOT_EQUAL_TO:
return "compareNotEqual";
case LESS_THAN_EQUAL:
return "lessThanEqual";
case LESS_THAN:
return "lessThan";
case GREATER_THAN_EQUAL:
return "greaterThanEqual";
case GREATER_THAN:
return "greaterThan";
case PREFIX_INCREMENT:
return "prefixInc";
case POSTFIX_INCREMENT:
return "postfixInc";
case POSTFIX_DECREMENT:
return "postfixDec";
case LOGICAL_COMPLEMENT:
return "not";
case CONDITIONAL_OR:
return "logicalOr";
case CONDITIONAL_AND:
return "logicalAnd";
case PLUS:
return "plus";
case PLUS_ASSIGNMENT:
return "plusEqual";
case MINUS:
return "minus";
case MINUS_ASSIGNMENT:
return "minusEqual";
}
throw new UnsupportedOperationException(kind.toString());
}
@Override
public JExpression visitAssignment(AssignmentTree at, Void __) {
return $b.invoke("assign").arg(loc(at)).arg(visit(at.getVariable())).arg(visit(at.getExpression()));
}
/**
* This is needed to handle cases like {@code Object[].class}.
*/
@Override
public JExpression visitArrayType(ArrayTypeTree at, Void __) {
if (at.getType() instanceof IdentifierTree) {
return visitIdentifier((IdentifierTree) at.getType(), __);
} else {
return defaultAction(at, __);
}
}
@Override
public JExpression visitNewArray(NewArrayTree nt, Void __) {
if (nt.getInitializers() != null) {
return $b.invoke("newArrayFromInitializers").tap(inv -> {
nt.getInitializers().forEach(d -> inv.arg(visit(d)));
});
} else {
return $b.invoke("newArray").tap(inv -> {
inv.arg(loc(nt));
inv.arg(t(nt.getType()).dotclass());
nt.getDimensions().forEach(d -> inv.arg(visit(d)));
});
}
}
@Override
public JExpression visitForLoop(ForLoopTree ft, Void __) {
return $b.invoke("forLoop").arg(JExpr._null()).arg($b.invoke("sequence").tap(inv -> ft.getInitializer().forEach(i -> inv.arg(visit(i))))).arg(visit(ft.getCondition())).arg($b.invoke("sequence").tap(inv -> ft.getUpdate().forEach(i -> inv.arg(visit(i))))).arg(visit(ft.getStatement()));
}
@Override
public JExpression visitEnhancedForLoop(EnhancedForLoopTree et, Void __) {
return $b.invoke("forInLoop").arg(loc(et)).arg(JExpr._null()).arg(erasure(et.getVariable()).dotclass()).arg(n(et.getVariable())).arg(visit(et.getExpression())).arg(visit(et.getStatement()));
}
@Override
public JExpression visitArrayAccess(ArrayAccessTree at, Void __) {
return $b.invoke("array").arg(loc(at)).arg(visit(at.getExpression())).arg(visit(at.getIndex()));
}
@Override
public JExpression visitBreak(BreakTree node, Void __) {
if (node.getLabel() != null)
throw new UnsupportedOperationException();
return $b.invoke("break_").arg(JExpr._null());
}
@Override
public JExpression visitContinue(ContinueTree node, Void aVoid) {
if (node.getLabel() != null)
throw new UnsupportedOperationException();
return $b.invoke("continue_").arg(JExpr._null());
}
@Override
public JExpression visitInstanceOf(InstanceOfTree it, Void __) {
return $b.invoke("instanceOf").arg(loc(it)).arg(visit(it.getExpression())).arg($b.invoke("constant").arg(t(it.getType()).dotclass()));
}
@Override
public JExpression visitThrow(ThrowTree tt, Void __) {
return $b.invoke("throw_").arg(loc(tt)).arg(visit(tt.getExpression()));
}
@Override
public JExpression visitDoWhileLoop(DoWhileLoopTree dt, Void __) {
return $b.invoke("doWhile").arg(JExpr._null()).arg(visit(dt.getStatement())).arg(visit(dt.getCondition()));
}
@Override
public JExpression visitConditionalExpression(ConditionalExpressionTree ct, Void __) {
return $b.invoke("ternaryOp").arg(visit(ct.getCondition())).arg(visit(ct.getTrueExpression())).arg(visit(ct.getFalseExpression()));
}
@Override
public JExpression visitTry(TryTree tt, Void __) {
return $b.invoke("tryCatch").arg(visit(tt.getBlock())).arg(visit(tt.getFinallyBlock())).tap(inv -> tt.getCatches().forEach(ct -> JExpr._new($CatchExpression).arg(t(ct.getParameter()).dotclass()).arg(n(ct.getParameter())).arg(visit(ct.getBlock()))));
}
@Override
protected JExpression defaultAction(Tree node, Void aVoid) {
throw new UnsupportedOperationException(node.toString());
}
}, null));
JVar $f = m.body().decl($CpsFunction, "f", f);
m.body()._throw(JExpr._new($CpsCallableInvocation).arg(JExpr.lit(methodName)).arg($f).arg(JExpr._null()).args(params));
}
use of com.sun.source.tree.AssignmentTree in project checker-framework by typetools.
the class AnnotatedTypeFactory method getFunctionalInterfaceType.
/**
* Get the AnnotatedDeclaredType for the FunctionalInterface from assignment context of the
* method reference or lambda expression which may be a variable assignment, a method call, or a
* cast.
*
* <p>The assignment context is not always correct, so we must search up the AST. It will
* recursively search for lambdas nested in lambdas.
*
* @param tree the tree of the lambda or method reference
* @return the functional interface type
*/
private AnnotatedDeclaredType getFunctionalInterfaceType(Tree tree) {
Tree parentTree = getPath(tree).getParentPath().getLeaf();
switch(parentTree.getKind()) {
case PARENTHESIZED:
return getFunctionalInterfaceType(parentTree);
case TYPE_CAST:
TypeCastTree cast = (TypeCastTree) parentTree;
assert isFunctionalInterface(trees.getTypeMirror(getPath(cast.getType())), parentTree, tree);
AnnotatedTypeMirror castATM = getAnnotatedType(cast.getType());
if (castATM.getKind() == TypeKind.INTERSECTION) {
AnnotatedIntersectionType itype = (AnnotatedIntersectionType) castATM;
for (AnnotatedTypeMirror t : itype.directSuperTypes()) {
if (TypesUtils.isFunctionalInterface(t.getUnderlyingType(), getProcessingEnv())) {
return (AnnotatedDeclaredType) t;
}
}
// We should never reach here: isFunctionalInterface performs the same check
// and would have raised an error already.
ErrorReporter.errorAbort(String.format("Expected the type of a cast tree in an assignment context to contain a functional interface bound. " + "Found type: %s for tree: %s in lambda tree: %s", castATM, cast, tree));
}
return (AnnotatedDeclaredType) castATM;
case NEW_CLASS:
NewClassTree newClass = (NewClassTree) parentTree;
int indexOfLambda = newClass.getArguments().indexOf(tree);
Pair<AnnotatedExecutableType, List<AnnotatedTypeMirror>> con = this.constructorFromUse(newClass);
AnnotatedTypeMirror constructorParam = AnnotatedTypes.getAnnotatedTypeMirrorOfParameter(con.first, indexOfLambda);
assert isFunctionalInterface(constructorParam.getUnderlyingType(), parentTree, tree);
return (AnnotatedDeclaredType) constructorParam;
case NEW_ARRAY:
NewArrayTree newArray = (NewArrayTree) parentTree;
AnnotatedArrayType newArrayATM = getAnnotatedType(newArray);
AnnotatedTypeMirror elementATM = newArrayATM.getComponentType();
assert isFunctionalInterface(elementATM.getUnderlyingType(), parentTree, tree);
return (AnnotatedDeclaredType) elementATM;
case METHOD_INVOCATION:
MethodInvocationTree method = (MethodInvocationTree) parentTree;
int index = method.getArguments().indexOf(tree);
Pair<AnnotatedExecutableType, List<AnnotatedTypeMirror>> exe = this.methodFromUse(method);
AnnotatedTypeMirror param = AnnotatedTypes.getAnnotatedTypeMirrorOfParameter(exe.first, index);
if (param.getKind() == TypeKind.WILDCARD) {
// param is an uninferred wildcard.
TypeMirror typeMirror = TreeUtils.typeOf(tree);
param = AnnotatedTypeMirror.createType(typeMirror, this, false);
addDefaultAnnotations(param);
}
assert isFunctionalInterface(param.getUnderlyingType(), parentTree, tree);
return (AnnotatedDeclaredType) param;
case VARIABLE:
VariableTree varTree = (VariableTree) parentTree;
assert isFunctionalInterface(TreeUtils.typeOf(varTree), parentTree, tree);
return (AnnotatedDeclaredType) getAnnotatedType(varTree.getType());
case ASSIGNMENT:
AssignmentTree assignmentTree = (AssignmentTree) parentTree;
assert isFunctionalInterface(TreeUtils.typeOf(assignmentTree), parentTree, tree);
return (AnnotatedDeclaredType) getAnnotatedType(assignmentTree.getVariable());
case RETURN:
Tree enclosing = TreeUtils.enclosingOfKind(getPath(parentTree), new HashSet<>(Arrays.asList(Tree.Kind.METHOD, Tree.Kind.LAMBDA_EXPRESSION)));
if (enclosing.getKind() == Tree.Kind.METHOD) {
MethodTree enclosingMethod = (MethodTree) enclosing;
return (AnnotatedDeclaredType) getAnnotatedType(enclosingMethod.getReturnType());
} else {
LambdaExpressionTree enclosingLambda = (LambdaExpressionTree) enclosing;
Pair<AnnotatedDeclaredType, AnnotatedExecutableType> result = getFnInterfaceFromTree(enclosingLambda);
AnnotatedExecutableType methodExe = result.second;
return (AnnotatedDeclaredType) methodExe.getReturnType();
}
case LAMBDA_EXPRESSION:
LambdaExpressionTree enclosingLambda = (LambdaExpressionTree) parentTree;
Pair<AnnotatedDeclaredType, AnnotatedExecutableType> result = getFnInterfaceFromTree(enclosingLambda);
AnnotatedExecutableType methodExe = result.second;
return (AnnotatedDeclaredType) methodExe.getReturnType();
case CONDITIONAL_EXPRESSION:
ConditionalExpressionTree conditionalExpressionTree = (ConditionalExpressionTree) parentTree;
final AnnotatedTypeMirror falseType = getAnnotatedType(conditionalExpressionTree.getFalseExpression());
final AnnotatedTypeMirror trueType = getAnnotatedType(conditionalExpressionTree.getTrueExpression());
// Known cases where we must use LUB because falseType/trueType will not be equal:
// a) when one of the types is a type variable that extends a functional interface
// or extends a type variable that extends a functional interface
// b) When one of the two sides of the expression is a reference to a sub-interface.
// e.g. interface ConsumeStr {
// public void consume(String s)
// }
// interface SubConsumer extends ConsumeStr {
// default void someOtherMethod() { ... }
// }
// SubConsumer s = ...;
// ConsumeStr stringConsumer = (someCondition) ? s : System.out::println;
AnnotatedTypeMirror conditionalType = AnnotatedTypes.leastUpperBound(this, trueType, falseType);
assert isFunctionalInterface(conditionalType.getUnderlyingType(), parentTree, tree);
return (AnnotatedDeclaredType) conditionalType;
default:
ErrorReporter.errorAbort("Could not find functional interface from assignment context. " + "Unexpected tree type: " + parentTree.getKind() + " For lambda tree: " + tree);
return null;
}
}
use of com.sun.source.tree.AssignmentTree in project checker-framework by typetools.
the class TreeUtils method getAssignmentContext.
/**
* Returns the tree with the assignment context for the treePath leaf node. (Does not handle
* pseudo-assignment of an argument to a parameter or a receiver expression to a receiver.)
*
* <p>The assignment context for the {@code treePath} is the leaf of its parent, if the parent
* is one of the following trees:
*
* <ul>
* <li>AssignmentTree
* <li>CompoundAssignmentTree
* <li>MethodInvocationTree
* <li>NewArrayTree
* <li>NewClassTree
* <li>ReturnTree
* <li>VariableTree
* </ul>
*
* If the parent is a ConditionalExpressionTree we need to distinguish two cases: If the leaf is
* either the then or else branch of the ConditionalExpressionTree, then recurse on the parent.
* If the leaf is the condition of the ConditionalExpressionTree, then return null to not
* consider this assignment context.
*
* <p>If the leaf is a ParenthesizedTree, then recurse on the parent.
*
* <p>Otherwise, null is returned.
*
* @return the assignment context as described
*/
public static Tree getAssignmentContext(final TreePath treePath) {
TreePath parentPath = treePath.getParentPath();
if (parentPath == null) {
return null;
}
Tree parent = parentPath.getLeaf();
switch(parent.getKind()) {
case PARENTHESIZED:
return getAssignmentContext(parentPath);
case CONDITIONAL_EXPRESSION:
ConditionalExpressionTree cet = (ConditionalExpressionTree) parent;
if (cet.getCondition() == treePath.getLeaf()) {
// No point in going on.
return null;
}
// Otherwise use the context of the ConditionalExpressionTree.
return getAssignmentContext(parentPath);
case ASSIGNMENT:
case METHOD_INVOCATION:
case NEW_ARRAY:
case NEW_CLASS:
case RETURN:
case VARIABLE:
return parent;
default:
// so use instanceof rather than listing all 11.
if (parent instanceof CompoundAssignmentTree) {
return parent;
}
return null;
}
}
use of com.sun.source.tree.AssignmentTree in project checker-framework by typetools.
the class TypeArgInferenceUtil method assignedTo.
/**
* Returns the annotated type that the leaf of path is assigned to, if it is within an
* assignment context. Returns the annotated type that the method invocation at the leaf is
* assigned to. If the result is a primitive, return the boxed version.
*
* @return type that path leaf is assigned to
*/
public static AnnotatedTypeMirror assignedTo(AnnotatedTypeFactory atypeFactory, TreePath path) {
Tree assignmentContext = TreeUtils.getAssignmentContext(path);
AnnotatedTypeMirror res;
if (assignmentContext == null) {
res = null;
} else if (assignmentContext instanceof AssignmentTree) {
ExpressionTree variable = ((AssignmentTree) assignmentContext).getVariable();
res = atypeFactory.getAnnotatedType(variable);
} else if (assignmentContext instanceof CompoundAssignmentTree) {
ExpressionTree variable = ((CompoundAssignmentTree) assignmentContext).getVariable();
res = atypeFactory.getAnnotatedType(variable);
} else if (assignmentContext instanceof MethodInvocationTree) {
MethodInvocationTree methodInvocation = (MethodInvocationTree) assignmentContext;
// TODO move to getAssignmentContext
if (methodInvocation.getMethodSelect() instanceof MemberSelectTree && ((MemberSelectTree) methodInvocation.getMethodSelect()).getExpression() == path.getLeaf()) {
return null;
}
ExecutableElement methodElt = TreeUtils.elementFromUse(methodInvocation);
AnnotatedTypeMirror receiver = atypeFactory.getReceiverType(methodInvocation);
res = assignedToExecutable(atypeFactory, path, methodElt, receiver, methodInvocation.getArguments());
} else if (assignmentContext instanceof NewArrayTree) {
// TODO: I left the previous implementation below, it definitely caused infinite loops
// TODO: if you called it from places like the TreeAnnotator.
res = null;
// FIXME: This may cause infinite loop
// AnnotatedTypeMirror type =
// atypeFactory.getAnnotatedType((NewArrayTree)assignmentContext);
// type = AnnotatedTypes.innerMostType(type);
// return type;
} else if (assignmentContext instanceof NewClassTree) {
// This need to be basically like MethodTree
NewClassTree newClassTree = (NewClassTree) assignmentContext;
ExecutableElement constructorElt = TreeUtils.constructor(newClassTree);
AnnotatedTypeMirror receiver = atypeFactory.fromNewClass(newClassTree);
res = assignedToExecutable(atypeFactory, path, constructorElt, receiver, newClassTree.getArguments());
} else if (assignmentContext instanceof ReturnTree) {
HashSet<Kind> kinds = new HashSet<>(Arrays.asList(Kind.LAMBDA_EXPRESSION, Kind.METHOD));
Tree enclosing = TreeUtils.enclosingOfKind(path, kinds);
if (enclosing.getKind() == Kind.METHOD) {
res = (atypeFactory.getAnnotatedType((MethodTree) enclosing)).getReturnType();
} else {
Pair<AnnotatedDeclaredType, AnnotatedExecutableType> fninf = atypeFactory.getFnInterfaceFromTree((LambdaExpressionTree) enclosing);
res = fninf.second.getReturnType();
}
} else if (assignmentContext instanceof VariableTree) {
res = assignedToVariable(atypeFactory, assignmentContext);
} else {
ErrorReporter.errorAbort("AnnotatedTypes.assignedTo: shouldn't be here!");
res = null;
}
if (res != null && TypesUtils.isPrimitive(res.getUnderlyingType())) {
return atypeFactory.getBoxedType((AnnotatedPrimitiveType) res);
} else {
return res;
}
}
Aggregations