use of de.lmu.ifi.dbs.elki.data.model.Model in project elki by elki-project.
the class OPTICSCut method makeOPTICSCut.
/**
* Compute an OPTICS cut clustering
*
* @param co Cluster order result
* @param epsilon Epsilon value for cut
* @return New partitioning clustering
*/
public static <E extends ClusterOrder> Clustering<Model> makeOPTICSCut(E co, double epsilon) {
// Clustering model we are building
Clustering<Model> clustering = new Clustering<>("OPTICS Cut Clustering", "optics-cut");
// Collects noise elements
ModifiableDBIDs noise = DBIDUtil.newHashSet();
double lastDist = Double.MAX_VALUE;
double actDist = Double.MAX_VALUE;
// Current working set
ModifiableDBIDs current = DBIDUtil.newHashSet();
// TODO: can we implement this more nicely with a 1-lookahead?
DBIDVar prev = DBIDUtil.newVar();
for (DBIDIter it = co.iter(); it.valid(); prev.set(it), it.advance()) {
lastDist = actDist;
actDist = co.getReachability(it);
if (actDist <= epsilon) {
// the last element before the plot drops belongs to the cluster
if (lastDist > epsilon && prev.isSet()) {
// So un-noise it
noise.remove(prev);
// Add it to the cluster
current.add(prev);
}
current.add(it);
} else {
// 'Finish' the previous cluster
if (!current.isEmpty()) {
// TODO: do we want a minpts restriction?
// But we get have only core points guaranteed anyway.
clustering.addToplevelCluster(new Cluster<Model>(current, ClusterModel.CLUSTER));
current = DBIDUtil.newHashSet();
}
// Add to noise
noise.add(it);
}
}
// Any unfinished cluster will also be added
if (!current.isEmpty()) {
clustering.addToplevelCluster(new Cluster<Model>(current, ClusterModel.CLUSTER));
}
// Add noise
clustering.addToplevelCluster(new Cluster<Model>(noise, true, ClusterModel.CLUSTER));
return clustering;
}
use of de.lmu.ifi.dbs.elki.data.model.Model in project elki by elki-project.
the class NaiveAgglomerativeHierarchicalClustering2 method run.
/**
* Run the algorithm
*
* @param db Database
* @param relation Relation
* @return Clustering hierarchy
*/
public Result run(Database db, Relation<O> relation) {
DistanceQuery<O> dq = db.getDistanceQuery(relation, getDistanceFunction());
ArrayDBIDs ids = DBIDUtil.ensureArray(relation.getDBIDs());
final int size = ids.size();
if (size > 0x10000) {
throw new AbortException("This implementation does not scale to data sets larger than " + 0x10000 + " instances (~17 GB RAM), which results in an integer overflow.");
}
LOG.verbose("Notice: SLINK is a much faster algorithm for single-linkage clustering!");
// Compute the initial (lower triangular) distance matrix.
double[] scratch = new double[triangleSize(size)];
DBIDArrayIter ix = ids.iter(), iy = ids.iter();
// Position counter - must agree with computeOffset!
int pos = 0;
for (int x = 0; ix.valid(); x++, ix.advance()) {
iy.seek(0);
for (int y = 0; y < x; y++, iy.advance()) {
scratch[pos] = dq.distance(ix, iy);
pos++;
}
}
// Initialize space for result:
double[] height = new double[size];
Arrays.fill(height, Double.POSITIVE_INFINITY);
// Parent node, to track merges
// have every object point to itself initially
ArrayModifiableDBIDs parent = DBIDUtil.newArray(ids);
// Active clusters, when not trivial.
Int2ReferenceMap<ModifiableDBIDs> clusters = new Int2ReferenceOpenHashMap<>();
// Repeat until everything merged, except the desired number of clusters:
final int stop = size - numclusters;
FiniteProgress prog = LOG.isVerbose() ? new FiniteProgress("Agglomerative clustering", stop, LOG) : null;
for (int i = 0; i < stop; i++) {
double min = Double.POSITIVE_INFINITY;
int minx = -1, miny = -1;
for (int x = 0; x < size; x++) {
if (height[x] < Double.POSITIVE_INFINITY) {
continue;
}
final int xbase = triangleSize(x);
for (int y = 0; y < x; y++) {
if (height[y] < Double.POSITIVE_INFINITY) {
continue;
}
final int idx = xbase + y;
if (scratch[idx] < min) {
min = scratch[idx];
minx = x;
miny = y;
}
}
}
assert (minx >= 0 && miny >= 0);
// Avoid allocating memory, by reusing existing iterators:
ix.seek(minx);
iy.seek(miny);
// Perform merge in data structure: x -> y
// Since y < x, prefer keeping y, dropping x.
height[minx] = min;
parent.set(minx, iy);
// Merge into cluster
ModifiableDBIDs cx = clusters.get(minx);
ModifiableDBIDs cy = clusters.get(miny);
if (cy == null) {
cy = DBIDUtil.newHashSet();
cy.add(iy);
}
if (cx == null) {
cy.add(ix);
} else {
cy.addDBIDs(cx);
clusters.remove(minx);
}
clusters.put(miny, cy);
// Update distance matrix. Note: miny < minx
final int xbase = triangleSize(minx), ybase = triangleSize(miny);
// Write to (y, j), with j < y
for (int j = 0; j < miny; j++) {
if (height[j] < Double.POSITIVE_INFINITY) {
continue;
}
scratch[ybase + j] = Math.min(scratch[xbase + j], scratch[ybase + j]);
}
// Write to (j, y), with y < j < x
for (int j = miny + 1; j < minx; j++) {
if (height[j] < Double.POSITIVE_INFINITY) {
continue;
}
final int jbase = triangleSize(j);
scratch[jbase + miny] = Math.min(scratch[xbase + j], scratch[jbase + miny]);
}
// Write to (j, y), with y < x < j
for (int j = minx + 1; j < size; j++) {
if (height[j] < Double.POSITIVE_INFINITY) {
continue;
}
final int jbase = triangleSize(j);
scratch[jbase + miny] = Math.min(scratch[jbase + minx], scratch[jbase + miny]);
}
LOG.incrementProcessed(prog);
}
LOG.ensureCompleted(prog);
// Build the clustering result
final Clustering<Model> dendrogram = new Clustering<>("Hierarchical-Clustering", "hierarchical-clustering");
for (int x = 0; x < size; x++) {
if (height[x] < Double.POSITIVE_INFINITY) {
DBIDs cids = clusters.get(x);
if (cids == null) {
ix.seek(x);
cids = DBIDUtil.deref(ix);
}
Cluster<Model> cluster = new Cluster<>("Cluster", cids);
dendrogram.addToplevelCluster(cluster);
}
}
return dendrogram;
}
use of de.lmu.ifi.dbs.elki.data.model.Model in project elki by elki-project.
the class LMCLUS method run.
/**
* The main LMCLUS (Linear manifold clustering algorithm) is processed in this
* method.
*
* <PRE>
* The algorithm samples random linear manifolds and tries to find clusters in it.
* It calculates a distance histogram searches for a threshold and partitions the
* points in two groups the ones in the cluster and everything else.
* Then the best fitting linear manifold is searched and registered as a cluster.
* The process is started over until all points are clustered.
* The last cluster should contain all the outliers. (or the whole data if no clusters have been found.)
* For details see {@link LMCLUS}.
* </PRE>
*
* @param database The database to operate on
* @param relation Relation
* @return Clustering result
*/
public Clustering<Model> run(Database database, Relation<NumberVector> relation) {
Clustering<Model> ret = new Clustering<>("LMCLUS Clustering", "lmclus-clustering");
FiniteProgress progress = LOG.isVerbose() ? new FiniteProgress("Clustered objects", relation.size(), LOG) : null;
IndefiniteProgress cprogress = LOG.isVerbose() ? new IndefiniteProgress("Clusters found", LOG) : null;
ModifiableDBIDs unclustered = DBIDUtil.newHashSet(relation.getDBIDs());
Random r = rnd.getSingleThreadedRandom();
final int maxdim = Math.min(maxLMDim, RelationUtil.dimensionality(relation));
int cnum = 0;
while (unclustered.size() > minsize) {
DBIDs current = unclustered;
int lmDim = 1;
for (int k = 1; k <= maxdim; k++) {
// stopping at the appropriate dimensionality either.
while (true) {
Separation separation = findSeparation(relation, current, k, r);
// " threshold: " + separation.threshold);
if (separation.goodness <= sensitivityThreshold) {
break;
}
ModifiableDBIDs subset = DBIDUtil.newArray(current.size());
for (DBIDIter iter = current.iter(); iter.valid(); iter.advance()) {
if (deviation(minusEquals(relation.get(iter).toArray(), separation.originV), separation.basis) < separation.threshold) {
subset.add(iter);
}
}
// logger.verbose("size:"+subset.size());
if (subset.size() < minsize) {
break;
}
current = subset;
lmDim = k;
// System.out.println("Partition: " + subset.size());
}
}
// No more clusters found
if (current.size() < minsize || current == unclustered) {
break;
}
// New cluster found
// TODO: annotate cluster with dimensionality
final Cluster<Model> cluster = new Cluster<>(current);
cluster.setName("Cluster_" + lmDim + "d_" + cnum);
cnum++;
ret.addToplevelCluster(cluster);
// Remove from main working set.
unclustered.removeDBIDs(current);
if (progress != null) {
progress.setProcessed(relation.size() - unclustered.size(), LOG);
}
if (cprogress != null) {
cprogress.setProcessed(cnum, LOG);
}
}
// Remaining objects are noise
if (unclustered.size() > 0) {
ret.addToplevelCluster(new Cluster<>(unclustered, true));
}
if (progress != null) {
progress.setProcessed(relation.size(), LOG);
progress.ensureCompleted(LOG);
}
LOG.setCompleted(cprogress);
return ret;
}
use of de.lmu.ifi.dbs.elki.data.model.Model in project elki by elki-project.
the class PreDeConTest method testPreDeConSubspaceOverlapping.
/**
* Run PreDeCon with fixed parameters and compare the result to a golden
* standard.O
*/
@Test
public void testPreDeConSubspaceOverlapping() {
Database db = makeSimpleDatabase(UNITTEST + "subspace-overlapping-3-4d.ascii", 850);
Clustering<Model> result = //
new ELKIBuilder<PreDeCon<DoubleVector>>(PreDeCon.class).with(DBSCAN.Parameterizer.EPSILON_ID, //
0.3).with(DBSCAN.Parameterizer.MINPTS_ID, //
10).with(PreDeCon.Settings.Parameterizer.DELTA_ID, //
0.012).with(PreDeCon.Settings.Parameterizer.KAPPA_ID, //
10.).with(PreDeCon.Settings.Parameterizer.LAMBDA_ID, //
2).build().run(db);
testFMeasure(db, result, 0.74982899);
testClusterSizes(result, new int[] { 356, 494 });
}
use of de.lmu.ifi.dbs.elki.data.model.Model in project elki by elki-project.
the class ClusterContingencyTableTest method testCompareDatabases.
/**
* Validate {@link ClusterContingencyTable} with respect to its ability to
* compare data clusterings.
*/
@Test
public void testCompareDatabases() {
Database db = AbstractSimpleAlgorithmTest.makeSimpleDatabase(dataset, shoulds);
Clustering<Model> rai = new TrivialAllInOne().run(db);
Clustering<Model> ran = new TrivialAllNoise().run(db);
Clustering<?> rbl = new ByLabelClustering().run(db);
assertEquals(1.0, computeFMeasure(rai, rai, false), Double.MIN_VALUE);
assertEquals(1.0, computeFMeasure(ran, ran, false), Double.MIN_VALUE);
assertEquals(1.0, computeFMeasure(rbl, rbl, false), Double.MIN_VALUE);
assertEquals(0.009950248756218905, computeFMeasure(ran, rbl, true), Double.MIN_VALUE);
assertEquals(0.0033277870216306157, computeFMeasure(rai, ran, true), Double.MIN_VALUE);
assertEquals(0.5, /* 0.3834296724470135 */
computeFMeasure(rai, rbl, false), Double.MIN_VALUE);
}
Aggregations