use of edu.sdsc.mmtf.spark.webfilters.Pisces in project mm-dev by sbl-sdsc.
the class DemoQueryVsAll method main.
public static void main(String[] args) throws IOException {
String path = MmtfReader.getMmtfReducedPath();
SparkConf conf = new SparkConf().setMaster("local[*]").setAppName(DemoQueryVsAll.class.getSimpleName());
JavaSparkContext sc = new JavaSparkContext(conf);
long start = System.nanoTime();
// download query structure
List<String> queryId = Arrays.asList("2W47");
JavaPairRDD<String, StructureDataInterface> query = MmtfReader.downloadFullMmtfFiles(queryId, sc).flatMapToPair(new StructureToPolymerChains());
// use a 1 % sample of the PDB and then filter by the Pisces
// non-redundant set
// at 20% sequence identity and a resolution better than 1.6 A.
double fraction = 1.0;
long seed = 123;
JavaPairRDD<String, StructureDataInterface> target = MmtfReader.readSequenceFile(path, fraction, seed, sc).flatMapToPair(new StructureToPolymerChains()).filter(new Pisces(20, 1.6)).sample(false, 0.08, seed);
// specialized algorithms
// String alignmentAlgorithm = CeMain.algorithmName;
// String alignmentAlgorithm = CeCPMain.algorithmName;
// String alignmentAlgorithm = FatCatFlexible.algorithmName;
// two standard algorithms
// String alignmentAlgorithm = CeMain.algorithmName;
String alignmentAlgorithm = FatCatRigid.algorithmName;
// String alignmentAlgorithm = ExhaustiveAligner.alignmentAlgorithm;
// calculate alignments
Dataset<Row> alignments = StructureAligner.getQueryVsAllAlignments(query, target, alignmentAlgorithm).cache();
// show results
int count = (int) alignments.count();
alignments.sort(col("tm").desc()).show(count);
System.out.println("Pairs: " + count);
long end = System.nanoTime();
System.out.println("Time per alignment: " + TimeUnit.NANOSECONDS.toMillis((end - start) / count) + " msec.");
System.out.println("Time: " + TimeUnit.NANOSECONDS.toSeconds(end - start) + " sec.");
sc.close();
}
use of edu.sdsc.mmtf.spark.webfilters.Pisces in project mm-dev by sbl-sdsc.
the class CathClassificationDataset method getSequenceData.
private static Dataset<Row> getSequenceData(String[] args) throws IOException {
SparkSession spark = SparkSession.builder().master("local[*]").getOrCreate();
JavaSparkContext sc = new JavaSparkContext(spark.sparkContext());
JavaRDD<Row> pdb = MmtfReader.readSequenceFile(args[0], sc).flatMapToPair(new StructureToPolymerChains()).filter(new Pisces(40, 2.0)).map(t -> RowFactory.create(t._1, t._2.getEntitySequence(0)));
// Generate the schema
StructType schema = new StructType(new StructField[] { new StructField("structureChainId", DataTypes.StringType, false, Metadata.empty()), new StructField("sequence", DataTypes.StringType, false, Metadata.empty()) });
// Apply the schema to the RDD
return spark.createDataFrame(pdb, schema);
}
use of edu.sdsc.mmtf.spark.webfilters.Pisces in project mmtf-spark by sbl-sdsc.
the class Metalnteractions method main.
public static void main(String[] args) throws IOException {
String path = MmtfReader.getMmtfFullPath();
SparkConf conf = new SparkConf().setMaster("local[*]").setAppName(Metalnteractions.class.getSimpleName());
JavaSparkContext sc = new JavaSparkContext(conf);
// input parameters
int sequenceIdentityCutoff = 30;
double resolution = 2.5;
int minInteractions = 4;
int maxInteractions = 6;
double distanceCutoff = 3.0;
// chemical component codes of metals in different oxidation states
String[] metals = { "V", "CR", "MN", "MN3", "FE", "FE2", "CO", "3CO", "NI", "3NI", "CU", "CU1", "CU3", "ZN", "MO", "4MO", "6MO" };
// read PDB and create a non-redundant PISCES subset
JavaPairRDD<String, StructureDataInterface> pdb = MmtfReader.readSequenceFile(path, sc).filter(new Pisces(sequenceIdentityCutoff, resolution));
// Setup criteria for metal interactions
InteractionFilter filter = new InteractionFilter();
filter.setDistanceCutoff(distanceCutoff);
filter.setMinInteractions(minInteractions);
filter.setMaxInteractions(maxInteractions);
filter.setQueryGroups(true, metals);
// exclude non-polar interactions
filter.setTargetElements(false, "H", "C", "P");
// tabulate interactions in a dataframe
Dataset<Row> interactions = GroupInteractionExtractor.getInteractions(pdb, filter).cache();
System.out.println("Metal interactions: " + interactions.count());
// select interacting atoms and orientational order parameters (q4 - q6)
// see {@link CoordinationGeometry}
interactions = interactions.select("pdbId", "q4", "q5", "q6", "element0", "groupNum0", "chain0", "element1", "groupNum1", "chain1", "distance1", "element2", "groupNum2", "chain2", "distance2", "element3", "groupNum3", "chain3", "distance3", "element4", "groupNum4", "chain4", "distance4", "element5", "groupNum5", "chain5", "distance5", "element6", "groupNum6", "chain6", "distance6").cache();
// show some example interactions
interactions.dropDuplicates("pdbId").show(10);
System.out.println("Unique interactions by metal:");
interactions.groupBy("element0").count().sort("count").show();
sc.close();
}
use of edu.sdsc.mmtf.spark.webfilters.Pisces in project mmtf-spark by sbl-sdsc.
the class PdbSequenceToWord2Vec method main.
public static void main(String[] args) throws IOException {
String path = MmtfReader.getMmtfReducedPath();
if (args.length != 1) {
System.err.println("Usage: " + PdbSequenceToWord2Vec.class.getSimpleName() + " <outputFileName>");
System.exit(1);
}
long start = System.nanoTime();
SparkConf conf = new SparkConf().setMaster("local[*]").setAppName(SecondaryStructureWord2VecEncoder.class.getSimpleName());
JavaSparkContext sc = new JavaSparkContext(conf);
// read MMTF Hadoop sequence file and create a non-redundant Pisces
// subset set (<=40% seq. identity) of L-protein chains
int sequenceIdentity = 40;
double resolution = 3.0;
JavaPairRDD<String, StructureDataInterface> pdb = MmtfReader.readSequenceFile(path, sc).flatMapToPair(new StructureToPolymerChains()).filter(new Pisces(sequenceIdentity, resolution));
Dataset<Row> data = PolymerSequenceExtractor.getDataset(pdb);
data.show(10, false);
// length of polymer sequence segment (number of residues)
int segmentLength = 11;
// add Word2Vec encoded feature vector
ProteinSequenceEncoder encoder = new ProteinSequenceEncoder(data);
// size of n-grams
int n = 2;
int windowSize = (segmentLength - 1) / 2;
// dimension of vector
int vectorSize = 50;
data = encoder.overlappingNgramWord2VecEncode(n, windowSize, vectorSize);
encoder.getWord2VecModel().save(args[0]);
long end = System.nanoTime();
System.out.println(TimeUnit.NANOSECONDS.toSeconds(end - start) + " sec.");
}
use of edu.sdsc.mmtf.spark.webfilters.Pisces in project mmtf-spark by sbl-sdsc.
the class SecondaryStructureBlosum62Encoder method main.
/**
* @param args args[0] outputFilePath, args[1] outputFormat (json|parquet)
* @throws IOException
* @throws StructureException
*/
public static void main(String[] args) throws IOException {
String path = MmtfReader.getMmtfReducedPath();
if (args.length != 2) {
System.err.println("Usage: " + SecondaryStructureBlosum62Encoder.class.getSimpleName() + " <outputFilePath> + <fileFormat>");
System.exit(1);
}
long start = System.nanoTime();
SparkConf conf = new SparkConf().setMaster("local[*]").setAppName(SecondaryStructureBlosum62Encoder.class.getSimpleName());
JavaSparkContext sc = new JavaSparkContext(conf);
// read MMTF Hadoop sequence file and create a non-redundant Pisces
// subset set (<=20% seq. identity) of L-protein chains
int sequenceIdentity = 20;
double resolution = 3.0;
JavaPairRDD<String, StructureDataInterface> pdb = MmtfReader.readSequenceFile(path, sc).flatMapToPair(new StructureToPolymerChains()).filter(new Pisces(sequenceIdentity, resolution));
int segmentLength = 11;
Dataset<Row> data = SecondaryStructureSegmentExtractor.getDataset(pdb, segmentLength).cache();
System.out.println("original data : " + data.count());
data = data.dropDuplicates("labelQ3", "sequence").cache();
System.out.println("- duplicate Q3/seq: " + data.count());
data = data.dropDuplicates("sequence").cache();
System.out.println("- duplicate seq : " + data.count());
// add a property encoded feature vector
ProteinSequenceEncoder encoder = new ProteinSequenceEncoder(data);
data = encoder.blosum62Encode();
data.printSchema();
data.show(25, false);
if (args[1].equals("json")) {
// coalesce data into a single file
data = data.coalesce(1);
}
data.write().mode("overwrite").format(args[1]).save(args[0]);
long end = System.nanoTime();
System.out.println(TimeUnit.NANOSECONDS.toSeconds(end - start) + " sec.");
}
Aggregations