Search in sources :

Example 11 with MolecularAssembly

use of ffx.potential.MolecularAssembly in project ffx by mjschnie.

the class PDBFilter method writeSIFTFile.

public boolean writeSIFTFile(File saveFile, boolean append, String[] resAndScore) {
    if (saveFile == null) {
        return false;
    }
    if (vdwH) {
        logger.info(" Printing hydrogens to van der Waals centers instead of nuclear locations.");
    }
    if (nSymOp != 0) {
        logger.info(String.format(" Printing atoms with symmetry operator %s", activeMolecularAssembly.getCrystal().spaceGroup.getSymOp(nSymOp).toString()));
    }
    /**
     * Create StringBuilders for ATOM, ANISOU and TER records that can be
     * reused.
     */
    StringBuilder sb = new StringBuilder("ATOM  ");
    StringBuilder anisouSB = new StringBuilder("ANISOU");
    StringBuilder terSB = new StringBuilder("TER   ");
    for (int i = 6; i < 80; i++) {
        sb.append(' ');
        anisouSB.append(' ');
        terSB.append(' ');
    }
    FileWriter fw;
    BufferedWriter bw;
    try {
        File newFile = saveFile;
        if (!append && !noVersioning) {
            newFile = version(saveFile);
        }
        activeMolecularAssembly.setFile(newFile);
        activeMolecularAssembly.setName(newFile.getName());
        if (logWrites) {
            logger.log(Level.INFO, " Saving {0}", newFile.getName());
        }
        fw = new FileWriter(newFile, append);
        bw = new BufferedWriter(fw);
        // =============================================================================
        // The CRYST1 record presents the unit cell parameters, space group, and Z
        // value. If the structure was not determined by crystallographic means, CRYST1
        // simply provides the unitary values, with an appropriate REMARK.
        // 
        // 7 - 15       Real(9.3)     a              a (Angstroms).
        // 16 - 24       Real(9.3)     b              b (Angstroms).
        // 25 - 33       Real(9.3)     c              c (Angstroms).
        // 34 - 40       Real(7.2)     alpha          alpha (degrees).
        // 41 - 47       Real(7.2)     beta           beta (degrees).
        // 48 - 54       Real(7.2)     gamma          gamma (degrees).
        // 56 - 66       LString       sGroup         Space  group.
        // 67 - 70       Integer       z              Z value.
        // =============================================================================
        Crystal crystal = activeMolecularAssembly.getCrystal();
        if (crystal != null && !crystal.aperiodic()) {
            Crystal c = crystal.getUnitCell();
            if (!listMode) {
                bw.write(format("CRYST1%9.3f%9.3f%9.3f%7.2f%7.2f%7.2f %10s\n", c.a, c.b, c.c, c.alpha, c.beta, c.gamma, padRight(c.spaceGroup.pdbName, 10)));
            } else {
                listOutput.add(format("CRYST1%9.3f%9.3f%9.3f%7.2f%7.2f%7.2f %10s", c.a, c.b, c.c, c.alpha, c.beta, c.gamma, padRight(c.spaceGroup.pdbName, 10)));
            }
        }
        // =============================================================================
        // The SSBOND record identifies each disulfide bond in protein and polypeptide
        // structures by identifying the two residues involved in the bond.
        // The disulfide bond distance is included after the symmetry operations at
        // the end of the SSBOND record.
        // 
        // 8 - 10        Integer         serNum       Serial number.
        // 12 - 14        LString(3)      "CYS"        Residue name.
        // 16             Character       chainID1     Chain identifier.
        // 18 - 21        Integer         seqNum1      Residue sequence number.
        // 22             AChar           icode1       Insertion code.
        // 26 - 28        LString(3)      "CYS"        Residue name.
        // 30             Character       chainID2     Chain identifier.
        // 32 - 35        Integer         seqNum2      Residue sequence number.
        // 36             AChar           icode2       Insertion code.
        // 60 - 65        SymOP           sym1         Symmetry oper for 1st resid
        // 67 - 72        SymOP           sym2         Symmetry oper for 2nd resid
        // 74 – 78        Real(5.2)      Length        Disulfide bond distance
        // 
        // If SG of cysteine is disordered then there are possible alternate linkages.
        // wwPDB practice is to put together all possible SSBOND records. This is
        // problematic because the alternate location identifier is not specified in
        // the SSBOND record.
        // =============================================================================
        int serNum = 1;
        Polymer[] polymers = activeMolecularAssembly.getChains();
        if (polymers != null) {
            for (Polymer polymer : polymers) {
                ArrayList<Residue> residues = polymer.getResidues();
                for (Residue residue : residues) {
                    if (residue.getName().equalsIgnoreCase("CYS")) {
                        List<Atom> cysAtoms = residue.getAtomList();
                        Atom SG1 = null;
                        for (Atom atom : cysAtoms) {
                            if (atom.getName().equalsIgnoreCase("SG")) {
                                SG1 = atom;
                                break;
                            }
                        }
                        List<Bond> bonds = SG1.getBonds();
                        for (Bond bond : bonds) {
                            Atom SG2 = bond.get1_2(SG1);
                            if (SG2.getName().equalsIgnoreCase("SG")) {
                                if (SG1.getIndex() < SG2.getIndex()) {
                                    bond.energy(false);
                                    if (!listMode) {
                                        bw.write(format("SSBOND %3d CYS %1s %4s    CYS %1s %4s %36s %5.2f\n", serNum++, SG1.getChainID().toString(), Hybrid36.encode(4, SG1.getResidueNumber()), SG2.getChainID().toString(), Hybrid36.encode(4, SG2.getResidueNumber()), "", bond.getValue()));
                                    } else {
                                        listOutput.add(format("SSBOND %3d CYS %1s %4s    CYS %1s %4s %36s %5.2f\n", serNum++, SG1.getChainID().toString(), Hybrid36.encode(4, SG1.getResidueNumber()), SG2.getChainID().toString(), Hybrid36.encode(4, SG2.getResidueNumber()), "", bond.getValue()));
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }
        // =============================================================================
        // 
        // 7 - 11        Integer       serial       Atom serial number.
        // 13 - 16        Atom          name         Atom name.
        // 17             Character     altLoc       Alternate location indicator.
        // 18 - 20        Residue name  resName      Residue name.
        // 22             Character     chainID      Chain identifier.
        // 23 - 26        Integer       resSeq       Residue sequence number.
        // 27             AChar         iCode        Code for insertion of residues.
        // 31 - 38        Real(8.3)     x            Orthogonal coordinates for X in Angstroms.
        // 39 - 46        Real(8.3)     y            Orthogonal coordinates for Y in Angstroms.
        // 47 - 54        Real(8.3)     z            Orthogonal coordinates for Z in Angstroms.
        // 55 - 60        Real(6.2)     occupancy    Occupancy.
        // 61 - 66        Real(6.2)     tempFactor   Temperature factor.
        // 77 - 78        LString(2)    element      Element symbol, right-justified.
        // 79 - 80        LString(2)    charge       Charge  on the atom.
        // =============================================================================
        // 1         2         3         4         5         6         7
        // 123456789012345678901234567890123456789012345678901234567890123456789012345678
        // ATOM      1  N   ILE A  16      60.614  71.140 -10.592  1.00  7.38           N
        // ATOM      2  CA  ILE A  16      60.793  72.149  -9.511  1.00  6.91           C
        MolecularAssembly[] molecularAssemblies = this.getMolecularAssemblys();
        int serial = 1;
        // Loop over biomolecular chains
        if (polymers != null) {
            for (Polymer polymer : polymers) {
                currentSegID = polymer.getName();
                currentChainID = polymer.getChainID();
                sb.setCharAt(21, currentChainID);
                // Loop over residues
                ArrayList<Residue> residues = polymer.getResidues();
                for (Residue residue : residues) {
                    String resName = residue.getName();
                    if (resName.length() > 3) {
                        resName = resName.substring(0, 3);
                    }
                    int resID = residue.getResidueNumber();
                    int i = 0;
                    String[] entries = null;
                    for (; i < resAndScore.length; i++) {
                        entries = resAndScore[i].split("\\t");
                        if (!entries[0].equals(entries[0].replaceAll("\\D+", ""))) {
                            String[] subEntries = entries[0].split("[^0-9]");
                            entries[0] = subEntries[0];
                        }
                        if (entries[0].equals(String.valueOf(resID)) && !".".equals(entries[1])) {
                            break;
                        }
                    }
                    sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
                    sb.replace(22, 26, String.format("%4s", Hybrid36.encode(4, resID)));
                    // Loop over atoms
                    ArrayList<Atom> residueAtoms = residue.getAtomList();
                    boolean altLocFound = false;
                    for (Atom atom : residueAtoms) {
                        if (i != resAndScore.length) {
                            writeSIFTAtom(atom, serial++, sb, anisouSB, bw, entries[1]);
                        } else {
                            writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
                        }
                        Character altLoc = atom.getAltLoc();
                        if (altLoc != null && !altLoc.equals(' ')) {
                            altLocFound = true;
                        }
                    }
                    // Write out alternate conformers
                    if (altLocFound) {
                        for (int ma = 1; ma < molecularAssemblies.length; ma++) {
                            MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
                            Polymer altPolymer = altMolecularAssembly.getPolymer(currentChainID, currentSegID, false);
                            Residue altResidue = altPolymer.getResidue(resName, resID, false);
                            residueAtoms = altResidue.getAtomList();
                            for (Atom atom : residueAtoms) {
                                if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc().equals('A')) {
                                    if (i != resAndScore.length) {
                                        writeSIFTAtom(atom, serial++, sb, anisouSB, bw, entries[1]);
                                    } else {
                                        writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
                                    }
                                }
                            }
                        }
                    }
                }
                terSB.replace(6, 11, String.format("%5s", Hybrid36.encode(5, serial++)));
                terSB.replace(12, 16, "    ");
                terSB.replace(16, 26, sb.substring(16, 26));
                if (!listMode) {
                    bw.write(terSB.toString());
                    bw.newLine();
                } else {
                    listOutput.add(terSB.toString());
                }
            }
        }
        sb.replace(0, 6, "HETATM");
        sb.setCharAt(21, 'A');
        int resID = 1;
        Polymer polymer = activeMolecularAssembly.getPolymer('A', "A", false);
        if (polymer != null) {
            ArrayList<Residue> residues = polymer.getResidues();
            for (Residue residue : residues) {
                int resID2 = residue.getResidueNumber();
                if (resID2 >= resID) {
                    resID = resID2 + 1;
                }
            }
        }
        /**
         * Loop over molecules, ions and then water.
         */
        ArrayList<Molecule> molecules = activeMolecularAssembly.getMolecules();
        for (int i = 0; i < molecules.size(); i++) {
            Molecule molecule = (Molecule) molecules.get(i);
            Character chainID = molecule.getChainID();
            sb.setCharAt(21, chainID);
            String resName = molecule.getResidueName();
            if (resName.length() > 3) {
                resName = resName.substring(0, 3);
            }
            sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
            sb.replace(22, 26, String.format("%4s", Hybrid36.encode(4, resID)));
            ArrayList<Atom> moleculeAtoms = molecule.getAtomList();
            boolean altLocFound = false;
            for (Atom atom : moleculeAtoms) {
                writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
                Character altLoc = atom.getAltLoc();
                if (altLoc != null && !altLoc.equals(' ')) {
                    altLocFound = true;
                }
            }
            // Write out alternate conformers
            if (altLocFound) {
                for (int ma = 1; ma < molecularAssemblies.length; ma++) {
                    MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
                    MSNode altmolecule = altMolecularAssembly.getMolecules().get(i);
                    moleculeAtoms = altmolecule.getAtomList();
                    for (Atom atom : moleculeAtoms) {
                        if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc().equals('A')) {
                            writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
                        }
                    }
                }
            }
            resID++;
        }
        ArrayList<MSNode> ions = activeMolecularAssembly.getIons();
        for (int i = 0; i < ions.size(); i++) {
            Molecule ion = (Molecule) ions.get(i);
            Character chainID = ion.getChainID();
            sb.setCharAt(21, chainID);
            String resName = ion.getResidueName();
            if (resName.length() > 3) {
                resName = resName.substring(0, 3);
            }
            sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
            sb.replace(22, 26, String.format("%4s", Hybrid36.encode(4, resID)));
            ArrayList<Atom> ionAtoms = ion.getAtomList();
            boolean altLocFound = false;
            for (Atom atom : ionAtoms) {
                writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
                Character altLoc = atom.getAltLoc();
                if (altLoc != null && !altLoc.equals(' ')) {
                    altLocFound = true;
                }
            }
            // Write out alternate conformers
            if (altLocFound) {
                for (int ma = 1; ma < molecularAssemblies.length; ma++) {
                    MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
                    MSNode altion = altMolecularAssembly.getIons().get(i);
                    ionAtoms = altion.getAtomList();
                    for (Atom atom : ionAtoms) {
                        if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc().equals('A')) {
                            writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
                        }
                    }
                }
            }
            resID++;
        }
        ArrayList<MSNode> waters = activeMolecularAssembly.getWaters();
        for (int i = 0; i < waters.size(); i++) {
            Molecule water = (Molecule) waters.get(i);
            Character chainID = water.getChainID();
            sb.setCharAt(21, chainID);
            String resName = water.getResidueName();
            if (resName.length() > 3) {
                resName = resName.substring(0, 3);
            }
            sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
            sb.replace(22, 26, String.format("%4s", Hybrid36.encode(4, resID)));
            ArrayList<Atom> waterAtoms = water.getAtomList();
            boolean altLocFound = false;
            for (Atom atom : waterAtoms) {
                writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
                Character altLoc = atom.getAltLoc();
                if (altLoc != null && !altLoc.equals(' ')) {
                    altLocFound = true;
                }
            }
            // Write out alternate conformers
            if (altLocFound) {
                for (int ma = 1; ma < molecularAssemblies.length; ma++) {
                    MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
                    MSNode altwater = altMolecularAssembly.getWaters().get(i);
                    waterAtoms = altwater.getAtomList();
                    for (Atom atom : waterAtoms) {
                        if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc().equals('A')) {
                            writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
                        }
                    }
                }
            }
            resID++;
        }
        if (!listMode) {
            bw.write("END");
            bw.newLine();
        } else {
            listOutput.add("END");
        }
        bw.close();
    } catch (Exception e) {
        String message = "Exception writing to file: " + saveFile.toString();
        logger.log(Level.WARNING, message, e);
        return false;
    }
    return true;
}
Also used : FileWriter(java.io.FileWriter) BufferedWriter(java.io.BufferedWriter) MSNode(ffx.potential.bonded.MSNode) Polymer(ffx.potential.bonded.Polymer) Atom(ffx.potential.bonded.Atom) MissingHeavyAtomException(ffx.potential.bonded.BondedUtils.MissingHeavyAtomException) IOException(java.io.IOException) MissingAtomTypeException(ffx.potential.bonded.BondedUtils.MissingAtomTypeException) Molecule(ffx.potential.bonded.Molecule) MolecularAssembly(ffx.potential.MolecularAssembly) Residue(ffx.potential.bonded.Residue) Bond(ffx.potential.bonded.Bond) File(java.io.File) Crystal(ffx.crystal.Crystal)

Example 12 with MolecularAssembly

use of ffx.potential.MolecularAssembly in project ffx by mjschnie.

the class ExtendedVariableTest method setup.

public MolecularAssembly setup(String filename, boolean quietly) {
    if (quietly || resultsOnly) {
        utils.setSilentPotential(true);
    }
    MolecularAssembly mola = openResource(filename, quietly);
    // Turn off checks for overlapping atoms, which is expected for lambda=0.
    mola.getPotentialEnergy().getCrystal().setSpecialPositionCutoff(0.0);
    return mola;
}
Also used : MolecularAssembly(ffx.potential.MolecularAssembly)

Example 13 with MolecularAssembly

use of ffx.potential.MolecularAssembly in project ffx by mjschnie.

the class ExtendedVariableTest method setupWithExtended.

public MolecularAssembly setupWithExtended(String filename, boolean quietly, ExtendedSystemConfig esvConfig) {
    if (quietly || resultsOnly) {
        utils.setSilentPotential(true);
    }
    setProp("pme.qi", true);
    MolecularAssembly mola = openResource(filename, quietly);
    // Turn off checks for overlapping atoms, which is expected for lambda=0.
    mola.getPotentialEnergy().getCrystal().setSpecialPositionCutoff(0.0);
    // Create extended variables; add to system; hook up to assembly.
    ExtendedSystem esvSystem = (esvConfig != null) ? new ExtendedSystem(mola, esvConfig) : new ExtendedSystem(mola);
    esvSystem.setConstantPh(7.4);
    esvSystem.populate(esvResidueIDs);
    mola.getPotentialEnergy().attachExtendedSystem(esvSystem);
    ExtendedSystemConfig.print(esvSystem.config);
    return mola;
}
Also used : MolecularAssembly(ffx.potential.MolecularAssembly) ExtendedSystem(ffx.potential.extended.ExtendedSystem)

Example 14 with MolecularAssembly

use of ffx.potential.MolecularAssembly in project ffx by mjschnie.

the class ExtendedVariableTest method testDerivatives.

/**
 * Analytic Derivative vs Finite Difference: VdW,PermReal,PermRecip,Total
 */
public void testDerivatives(ExtendedSystemConfig esvConfig) {
    if (esvConfig == null) {
        esvConfig = setDebugParameters();
    }
    MolecularAssembly mola = setupWithExtended(esvFilename, false, esvConfig);
    ForceFieldEnergy ffe = mola.getPotentialEnergy();
    ExtendedSystem esvSystem = ffe.getExtendedSystem();
    if (resultsOnly) {
        utils.setSilentPotential(true);
    }
    final double step = 1e-6;
    for (int i = 0; i < esvSystem.size(); i++) {
        final String esvName = esvSystem.getEsv(i).getName();
        if (!mola.getCrystal().aperiodic()) {
            sb.append(format(" Finite Diff: %5.5s (Crystal)\n", esvName));
        } else {
            sb.append(format(" Finite Diff: %5.5s (Aprodc.)\n", esvName));
        }
        // Reset lambdas.
        for (int k = 0; k < esvSystem.size(); k++) {
            esvSystem.setLambda(k, initialLambda[k]);
        }
        for (double lambda : lambdaValuesToTest) {
            final double center, low, high;
            if (oneSidedFiniteAtExtremes) {
                center = lambda;
                low = (center - step >= 0.0) ? center - step : center;
                high = (center + step <= 1.0) ? center + step : center;
            } else {
                center = (lambda - step < 0.0) ? lambda + step : (lambda + step > 1.0) ? lambda - step : lambda;
                low = center - step;
                high = center + step;
            }
            final double width = high - low;
            // Collect numeric derivative components.
            esvSystem.setLambda(i, low);
            ffe.energy(true, false);
            final double vdwLow = ffe.getEnergyComponent(PotentialComponent.VanDerWaals);
            final double bondedLow = ffe.getEnergyComponent(PotentialComponent.Bonded);
            final double biasLow = ffe.getEnergyComponent(PotentialComponent.pHMD);
            final double permRealLow = ffe.getEnergyComponent(PotentialComponent.PermanentRealSpace);
            final double permSelfLow = ffe.getEnergyComponent(PotentialComponent.PermanentSelf);
            final double permRecipLow = ffe.getEnergyComponent(PotentialComponent.PermanentReciprocal);
            final double indRealLow = ffe.getEnergyComponent(PotentialComponent.InducedRealSpace);
            final double indSelfLow = ffe.getEnergyComponent(PotentialComponent.InducedSelf);
            final double indRecipLow = ffe.getEnergyComponent(PotentialComponent.InducedReciprocal);
            final double totalLow = ffe.getEnergyComponent(PotentialComponent.ForceFieldEnergy);
            esvSystem.setLambda(i, high);
            ffe.energy(true, false);
            final double vdwHigh = ffe.getEnergyComponent(PotentialComponent.VanDerWaals);
            final double bondedHigh = ffe.getEnergyComponent(PotentialComponent.Bonded);
            final double biasHigh = ffe.getEnergyComponent(PotentialComponent.pHMD);
            final double permRealHigh = ffe.getEnergyComponent(PotentialComponent.PermanentRealSpace);
            final double permSelfHigh = ffe.getEnergyComponent(PotentialComponent.PermanentSelf);
            final double permRecipHigh = ffe.getEnergyComponent(PotentialComponent.PermanentReciprocal);
            final double indRealHigh = ffe.getEnergyComponent(PotentialComponent.InducedRealSpace);
            final double indSelfHigh = ffe.getEnergyComponent(PotentialComponent.InducedSelf);
            final double indRecipHigh = ffe.getEnergyComponent(PotentialComponent.InducedReciprocal);
            final double totalHigh = ffe.getEnergyComponent(PotentialComponent.ForceFieldEnergy);
            // Get analytic derivatives from the center.
            esvSystem.setLambda(i, center);
            ffe.energy(true, false);
            final double vdwAna = esvSystem.getDerivativeComponent(PotentialComponent.VanDerWaals, i);
            final double bondedAna = esvSystem.getDerivativeComponent(PotentialComponent.Bonded, i);
            final double biasAna = esvSystem.getDerivativeComponent(PotentialComponent.pHMD, i);
            final double permRealAna = esvSystem.getDerivativeComponent(PotentialComponent.PermanentRealSpace, i);
            final double permSelfAna = esvSystem.getDerivativeComponent(PotentialComponent.PermanentSelf, i);
            final double permRecipAna = esvSystem.getDerivativeComponent(PotentialComponent.PermanentReciprocal, i);
            final double indRealAna = esvSystem.getDerivativeComponent(PotentialComponent.InducedRealSpace, i);
            final double indSelfAna = esvSystem.getDerivativeComponent(PotentialComponent.InducedSelf, i);
            final double indRecipAna = esvSystem.getDerivativeComponent(PotentialComponent.InducedReciprocal, i);
            final double totalAna = esvSystem.getDerivativeComponent(PotentialComponent.ForceFieldEnergy, i);
            // Calculate numeric derivatives and error.
            final double vdwNum = (vdwHigh - vdwLow) / (width);
            final double vdwErr = (vdwAna - vdwNum);
            final double bondedNum = (bondedHigh - bondedLow) / (width);
            final double bondedErr = (bondedAna - bondedNum);
            final double biasNum = (biasHigh - biasLow) / (width);
            final double biasErr = (biasAna - biasNum);
            final double permRealNum = (permRealHigh - permRealLow) / (width);
            final double permRealErr = (permRealAna - permRealNum);
            final double permSelfNum = (permSelfHigh - permSelfLow) / (width);
            final double permSelfErr = (permSelfAna - permSelfNum);
            final double permRecipNum = (permRecipHigh - permRecipLow) / (width);
            final double permRecipErr = (permRecipAna - permRecipNum);
            final double indRealNum = (indRealHigh - indRealLow) / (width);
            final double indRealErr = (indRealAna - indRealNum);
            final double indSelfNum = (indSelfHigh - indSelfLow) / (width);
            final double indSelfErr = (indSelfAna - indSelfNum);
            final double indRecipNum = (indRecipHigh - indRecipLow) / (width);
            final double indRecipErr = (indRecipAna - indRecipNum);
            final double totalNum = (totalHigh - totalLow) / (width);
            final double totalErr = (totalAna - totalNum);
            sb.append(format(" %-28s %12s %12s %12s %12s %12s %12s %12s %12s %12s %12s\n", StringUtils.repeat("*", 28), "vdw ", "bonded", "bias", "permReal", "permSelf", "permRecip", "indReal", "indSelf", "indRecip", "total"));
            sb.append(format(" %-28s %+12.6g %+12.6g %+12.6g %+12.6g %+12.6g %+12.6g %+12.6g %+12.6g %+12.6g %+12.6g\n", format("Numeric  @L=%s", esvSystem.getLambdaList()), vdwNum, bondedNum, biasNum, permRealNum, permSelfNum, permRecipNum, indRealNum, indSelfNum, indRecipNum, totalNum));
            sb.append(format(" %-28s %+12.6g %+12.6g %+12.6g %+12.6g %+12.6g %+12.6g %+12.6g %+12.6g %+12.6g %+12.6g\n", format("Analytic @L=%s", esvSystem.getLambdaList()), vdwAna, bondedAna, biasAna, permRealAna, permSelfAna, permRecipAna, indRealAna, indSelfAna, indRecipAna, totalAna));
            sb.append(format(" %-28s %12s %12s %12s %12s %12s %12s %12s %12s %12s %12s\n", "Error:", err(vdwAna, vdwNum), err(bondedAna, bondedNum), err(biasAna, biasNum), err(permRealAna, permRealNum), err(permSelfAna, permSelfNum), err(permRecipAna, permRecipNum), err(indRealAna, indRealNum), err(indSelfAna, indSelfNum), err(indRecipAna, indRecipNum), err(totalAna, totalNum)));
            utils.setSilentPotential(false);
            logger.info(sb.toString());
            if (assertions) {
                assertEquals("VanDerWaals Deriv Error", 0.0, vdwErr, tolerance);
                assertEquals("Bonded Deriv Error", 0.0, bondedErr, tolerance);
                assertEquals("Bias Deriv Error", 0.0, biasErr, tolerance);
                assertEquals("PermReal Deriv Error", 0.0, permRealErr, tolerance);
                assertEquals("PermSelf Deriv Error", 0.0, permSelfErr, tolerance);
                assertEquals("PermRecip Deriv Error", 0.0, permRecipErr, tolerance);
                assertEquals("IndReal Deriv Error", 0.0, indRealErr, tolerance);
                assertEquals("IndSelf Deriv Error", 0.0, indSelfErr, tolerance);
                assertEquals("IndRecip Deriv Error", 0.0, indRecipErr, tolerance);
                assertEquals("Total Deriv Error", 0.0, totalErr, tolerance);
            }
        }
    // lambda loop
    }
// ESV loop
}
Also used : MolecularAssembly(ffx.potential.MolecularAssembly) ExtendedSystem(ffx.potential.extended.ExtendedSystem) ForceFieldEnergy(ffx.potential.ForceFieldEnergy)

Example 15 with MolecularAssembly

use of ffx.potential.MolecularAssembly in project ffx by mjschnie.

the class ModelingShell method returnEnergy.

/**
 * <p>
 * returnEnergy</p>
 *
 * @return Current system energy (a double).
 */
public double returnEnergy() {
    if (interrupted) {
        logger.info(" Algorithm interrupted - skipping energy.");
        return 0.0;
    }
    if (terminatableAlgorithm != null) {
        logger.info(" Algorithm already running - skipping energy.");
        return 0.0;
    }
    MolecularAssembly active = mainPanel.getHierarchy().getActive();
    if (active != null) {
        ForceFieldEnergy energy = active.getPotentialEnergy();
        if (energy == null) {
            energy = ForceFieldEnergy.energyFactory(active);
            active.setPotential(energy);
        }
        return energy.energy(false, true);
    }
    logger.warning(" Energy could not be calculated");
    return 0.0;
}
Also used : MolecularAssembly(ffx.potential.MolecularAssembly) ForceFieldEnergy(ffx.potential.ForceFieldEnergy)

Aggregations

MolecularAssembly (ffx.potential.MolecularAssembly)34 File (java.io.File)13 ForceFieldEnergy (ffx.potential.ForceFieldEnergy)11 Atom (ffx.potential.bonded.Atom)10 Crystal (ffx.crystal.Crystal)7 MSNode (ffx.potential.bonded.MSNode)7 IOException (java.io.IOException)7 CompositeConfiguration (org.apache.commons.configuration.CompositeConfiguration)7 MissingAtomTypeException (ffx.potential.bonded.BondedUtils.MissingAtomTypeException)5 MissingHeavyAtomException (ffx.potential.bonded.BondedUtils.MissingHeavyAtomException)5 Molecule (ffx.potential.bonded.Molecule)5 Polymer (ffx.potential.bonded.Polymer)5 Residue (ffx.potential.bonded.Residue)5 PDBFilter (ffx.potential.parsers.PDBFilter)5 ParallelTeam (edu.rit.pj.ParallelTeam)4 Bond (ffx.potential.bonded.Bond)4 ExtendedSystem (ffx.potential.extended.ExtendedSystem)4 ForceField (ffx.potential.parameters.ForceField)4 ForceFieldFilter (ffx.potential.parsers.ForceFieldFilter)4 BufferedWriter (java.io.BufferedWriter)4