use of ffx.potential.bonded.Residue in project ffx by mjschnie.
the class RotamerOptimization method minMax2BodySum.
/**
* Find the min/max of the 2-body energy.
*
* @param residues The residue array.
* @param minMax The bound on the 3-body energy (minMax[0] = min, minMax[1]
* = max.
* @param i Residue i
* @param ri Rotamer ri of Residue i
* @param j Residue j
* @param rj Rotamer rj of Residue j
* @return true if this term is valid.
*/
private boolean minMax2BodySum(Residue[] residues, double[] minMax, int i, int ri, int j, int rj) {
int nres = residues.length;
double minSum = 0.0;
double maxSum = 0.0;
for (int k = 0; k < nres; k++) {
if (k == i || k == j) {
continue;
}
Residue residuek = residues[k];
Rotamer[] romatersk = residuek.getRotamers(library);
int lenrk = romatersk.length;
double currentMin = Double.MAX_VALUE;
double currentMax = Double.MIN_VALUE;
for (int rk = 0; rk < lenrk; rk++) {
if (check(k, rk)) {
// k,rk is part of no valid phase space, so ignore it.
continue;
}
if (check(i, ri, k, rk) || check(j, rj, k, rk)) {
// Not implemented: check(i, ri, j, rj, k, rk).
// k,rk conflicts with i,ri or j,rj, so the max is now Double.NaN. No effect on minimum.
currentMax = Double.NaN;
} else {
double current = get3Body(i, ri, j, rj, k, rk);
if (Double.isFinite(current) && current < currentMin) {
currentMin = current;
}
// Else, no new minimum found.
if (Double.isFinite(current) && Double.isFinite(currentMax)) {
if (current > currentMax) {
currentMax = current;
}
// Else, we have failed to find a new finite maximum.
} else {
// The maximum is NaN.
currentMax = Double.NaN;
}
}
}
if (currentMin == Double.MAX_VALUE || !Double.isFinite(minSum)) {
// We have failed to find a viable configuration for i,ri,j,rj, as it conflicts with all rk for this k.
minMax[0] = Double.NaN;
minMax[1] = Double.NaN;
return false;
} else {
// Add finite current min to minSum.
minSum += currentMin;
}
if (Double.isFinite(maxSum) && Double.isFinite(currentMax)) {
maxSum += currentMax;
} else {
maxSum = Double.NaN;
}
}
minMax[0] = minSum;
minMax[1] = maxSum;
return true;
}
use of ffx.potential.bonded.Residue in project ffx by mjschnie.
the class RotamerOptimization method dryRunForEnsemble.
/**
* Finds all permutations within buffer energy of GMEC.
*
* @param residues
* @param i Current depth in residue/rotamer tree.
* @param currentRotamers Current set of rotamers at this node.
* @param gmecEnergy Minimum energy for these residues.
* @param permutationEnergies Energy of all permutations.
* @param permutations Contains accepted permutations.
* @return 0.
*/
private double dryRunForEnsemble(Residue[] residues, int i, int[] currentRotamers, double gmecEnergy, double[] permutationEnergies, int[][] permutations) {
// This is the initialization condition.
if (i == 0) {
evaluatedPermutations = 0;
}
int nResidues = residues.length;
Residue residuei = residues[i];
Rotamer[] rotamersi = residuei.getRotamers(library);
int lenri = rotamersi.length;
if (i < nResidues - 1) {
for (int ri = 0; ri < lenri; ri++) {
if (check(i, ri)) {
continue;
}
boolean deadEnd = false;
for (int j = 0; j < i; j++) {
int rj = currentRotamers[j];
deadEnd = check(j, rj, i, ri);
if (deadEnd) {
break;
}
}
if (deadEnd) {
continue;
}
currentRotamers[i] = ri;
dryRunForEnsemble(residues, i + 1, currentRotamers, gmecEnergy, permutationEnergies, permutations);
}
} else {
/**
* At the end of the recursion, check each rotamer of the final
* residue.
*/
for (int ri = 0; ri < lenri; ri++) {
if (check(i, ri)) {
continue;
}
currentRotamers[i] = ri;
boolean deadEnd = false;
for (int j = 0; j < i; j++) {
int rj = currentRotamers[j];
deadEnd = check(j, rj, i, ri);
if (deadEnd) {
break;
}
}
if (deadEnd) {
continue;
}
if (permutationEnergies[evaluatedPermutations] - gmecEnergy < ensembleEnergy) {
permutations[evaluatedPermutations] = new int[nResidues];
System.arraycopy(currentRotamers, 0, permutations[evaluatedPermutations], 0, nResidues);
}
evaluatedPermutations++;
}
}
return 0.0;
}
use of ffx.potential.bonded.Residue in project ffx by mjschnie.
the class RotamerOptimization method decomposePrint.
/**
* Prints based on a molecule-based decomposition of original energies. Would need to be re-implemented.
* @param residues
* @param totalEnergy
* @param backbone
* @param residueEnergy
*/
private void decomposePrint(Residue[] residues, double totalEnergy, double backbone, double[][] residueEnergy) {
if (residues == null || residueEnergy == null) {
return;
}
int[] molecule = molecularAssembly.getMoleculeNumbers();
// Internal Molecule ID to Reduced Set of Molecule IDs
HashMap<Integer, Integer> nMolecules = new HashMap<>();
// Internal Molecule ID to Molecule Names
HashMap<Integer, String> molNames = new HashMap<>();
// Residue ID to Reduced Set of Molecule IDs
HashMap<Residue, Integer> moleculeMap = new HashMap<>();
/**
* Sum self, 2-Body and 3-Body energies.
*/
int nRes = residues.length;
double sumSelf = 0;
double sumPair = 0;
double sumTri = 0;
int molPointer = 0;
int reducedIndex = 0;
for (int i = 0; i < nRes; i++) {
sumSelf += residueEnergy[0][i];
sumPair += residueEnergy[1][i];
sumTri += residueEnergy[2][i];
// Count the number of molecules.
Residue r = residues[i];
Atom a0 = (Atom) r.getAtomNode(0);
int atomIndex = a0.getIndex();
Integer moleculeIndex = molecule[atomIndex];
if (!nMolecules.containsKey(moleculeIndex)) {
nMolecules.put(moleculeIndex, molPointer);
molNames.put(moleculeIndex, r.getSegID());
reducedIndex = molPointer;
molPointer++;
} else {
reducedIndex = nMolecules.get(moleculeIndex);
}
moleculeMap.put(r, reducedIndex);
}
int nMol = nMolecules.size();
if (nMol > 1) {
logger.info(format("\n"));
logger.info(format(" Molecule-Based Many-Body Energy Summation\n "));
double[][] moleculeEnergy = new double[3][nMol];
for (int i = 0; i < nRes; i++) {
int iMolecule = moleculeMap.get(residues[i]);
moleculeEnergy[0][iMolecule] += residueEnergy[0][i];
moleculeEnergy[1][iMolecule] += residueEnergy[1][i];
moleculeEnergy[2][iMolecule] += residueEnergy[2][i];
}
logger.info(format(" %9s %9s %9s %9s %9s", "Molecule", "Self", "Pair", "3-Body", "Total"));
for (int i = 0; i < nMol; i++) {
String molName = molNames.get(i);
double total = moleculeEnergy[0][i] + moleculeEnergy[1][i] + moleculeEnergy[2][i];
logger.info(format(" %9s %9.3f %9.3f %9.3f %9.3f", molName, moleculeEnergy[0][i], moleculeEnergy[1][i], moleculeEnergy[2][i], total));
}
logger.info(format(" %9s %9.3f %9.3f %9.3f %9.3f", "Sum", sumSelf, sumPair, sumTri, sumSelf + sumPair + sumTri));
}
logger.info(format("\n"));
logger.info(format(" Residue-Based Many-Body Energy Summation\n "));
logger.info(format(" %9s %9s %9s %9s %9s", "Residue", "Self", "Pair", "3-Body", "Total"));
for (int i = 0; i < nRes; i++) {
double total = residueEnergy[0][i] + residueEnergy[1][i] + residueEnergy[2][i];
logger.info(format(" %9s %9.3f %9.3f %9.3f %9.3f", residues[i].toFormattedString(false, true), residueEnergy[0][i], residueEnergy[1][i], residueEnergy[2][i], total));
}
logger.info(format(" %9s %9.3f %9.3f %9.3f %9.3f", "Sum", sumSelf, sumPair, sumTri, sumSelf + sumPair + sumTri));
logger.info(format(" Backbone: %9.3f", backbone));
double target = sumSelf + sumPair + sumTri + backbone;
logger.info(format(" Expansion Total: %9.3f", target));
logger.info(format(" True Total: %9.3f", totalEnergy));
logger.info(format(" Neglected: %9.3f\n", totalEnergy - target));
}
use of ffx.potential.bonded.Residue in project ffx by mjschnie.
the class RotamerOptimization method deeRotamerPairElimination.
/**
* Rotamer pair elimination driver for many-body Dead End Elimination.
* Generally less effective than Goldstein.
*
* @param residues Residues under consideration.
* @return If at least one pair eliminated.
*/
private boolean deeRotamerPairElimination(Residue[] residues) {
int nres = residues.length;
boolean eliminated = false;
for (int i = 0; i < (nres - 1); i++) {
Residue residuei = residues[i];
Rotamer[] rotamersi = residuei.getRotamers(library);
int lenri = rotamersi.length;
// Minimum and maximum summation found for ri-rj pairs.
double[][] minPairEnergies = new double[lenri][];
double[][] maxPairEnergies = new double[lenri][];
for (int j = i + 1; j < nres; j++) {
Residue residuej = residues[j];
Rotamer[] rotamersj = residuej.getRotamers(library);
int lenrj = rotamersj.length;
for (int ri = 0; ri < lenri; ri++) {
if (check(i, ri)) {
continue;
}
minPairEnergies[ri] = new double[lenrj];
maxPairEnergies[ri] = new double[lenrj];
for (int rj = 0; rj < lenrj; rj++) {
if (check(j, rj) || check(i, ri, j, rj)) {
continue;
}
minPairEnergies[ri][rj] = getSelf(i, ri) + getSelf(j, rj) + get2Body(i, ri, j, rj);
maxPairEnergies[ri][rj] = minPairEnergies[ri][rj];
// Min and max external summations for ri-rj.
double[] minMax = new double[2];
// Add contributions from third residues k, and possibly fourth residues l.
if (minMaxE2(residues, minMax, i, ri, j, rj)) {
if (Double.isFinite(minPairEnergies[ri][rj]) && Double.isFinite(minMax[0])) {
minPairEnergies[ri][rj] += minMax[0];
} else {
logger.severe(String.format(" An ri-rj pair %s-%d %s-%d with NaN minimum was caught incorrectly!", residuei.toFormattedString(false, true), ri, residuej.toFormattedString(false, true), rj));
}
if (Double.isFinite(maxPairEnergies[ri][rj]) && Double.isFinite(minMax[1])) {
maxPairEnergies[ri][rj] += minMax[1];
} else {
// ri-rj can clash, and isn't very useful to eliminate by.
maxPairEnergies[ri][rj] = Double.NaN;
}
} else {
// A NaN minimum energy for some pair indicates it's definitely not part of the GMEC.
minPairEnergies[ri][rj] = Double.NaN;
logger.info(String.format(" Eliminating pair %s-%d %s-%d that always clashes.", residuei.toFormattedString(false, true), ri, residuej.toFormattedString(false, true), rj));
eliminateRotamerPair(residues, i, ri, j, rj, print);
eliminated = true;
}
}
}
double pairEliminationEnergy = Double.MAX_VALUE;
for (int ri = 0; ri < lenri; ri++) {
if (check(i, ri)) {
continue;
}
for (int rj = 0; rj < lenrj; rj++) {
if (check(j, rj) || check(i, ri, j, rj)) {
continue;
}
if (Double.isFinite(maxPairEnergies[ri][rj]) && maxPairEnergies[ri][rj] < pairEliminationEnergy) {
pairEliminationEnergy = maxPairEnergies[ri][rj];
}
}
}
if (pairEliminationEnergy == Double.MAX_VALUE) {
logIfMaster(String.format(" All rotamer pairs for residues %s and %s have possible conflicts; cannot perform any eliminations!", residuei.toFormattedString(false, true), residuej), Level.FINE);
} else {
double comparisonEnergy = pairEliminationEnergy + ensembleBuffer;
for (int ri = 0; ri < lenri; ri++) {
if (check(i, ri)) {
continue;
}
for (int rj = 0; rj < lenrj; rj++) {
if (check(j, rj) || check(i, ri, j, rj)) {
continue;
}
if (minPairEnergies[ri][rj] > comparisonEnergy) {
if (eliminateRotamerPair(residues, i, ri, j, rj, print)) {
eliminated = true;
logIfMaster(format(" Eliminating rotamer pair: %s %d, %s %d (%s > %s + %6.6f)", residuei.toFormattedString(false, true), ri, residuej.toFormattedString(false, true), rj, formatEnergy(minPairEnergies[ri][rj]), formatEnergy(pairEliminationEnergy), ensembleBuffer), Level.INFO);
} else {
// See above check(i, ri, j, rj) for why this should not be taken!
logIfMaster(format(" Already eliminated rotamer pair! %s %d, %s %d (%s > %1s + %6.6f)", residuei.toFormattedString(false, true), ri, residuej.toFormattedString(false, true), rj, formatEnergy(minPairEnergies[ri][rj]), formatEnergy(pairEliminationEnergy), ensembleBuffer), Level.WARNING);
}
}
}
}
}
if (pairsToSingleElimination(residues, i, j)) {
eliminated = true;
}
}
}
return eliminated;
}
use of ffx.potential.bonded.Residue in project ffx by mjschnie.
the class RotamerOptimization method globalOptimization.
/**
* The main driver for optimizing a block of residues using DEE.
*
* @param residueList Residues to optimize.
* @return Final energy.
*/
private double globalOptimization(List<Residue> residueList) {
int currentEnsemble = Integer.MAX_VALUE;
Residue[] residues = residueList.toArray(new Residue[residueList.size()]);
int nResidues = residues.length;
int[] currentRotamers = new int[nResidues];
int iterations = 0;
boolean finalTry = false;
int bestEnsembleTargetDiffThusFar = Integer.MAX_VALUE;
double bestBufferThusFar = ensembleBuffer;
double startingBuffer = ensembleBuffer;
optimum = new int[nResidues];
if (ensembleEnergy > 0.0) {
ensembleBuffer = ensembleEnergy;
applyEliminationCriteria(residues, true, true);
if (x == null) {
Atom[] atoms = molecularAssembly.getAtomArray();
int nAtoms = atoms.length;
x = new double[nAtoms * 3];
}
/**
* Compute the number of permutations without eliminating dead-ends
* and compute the number of permutations using singleton
* elimination.
*/
double permutations = 1;
double singletonPermutations = 1;
for (int i = 0; i < nResidues; i++) {
Residue residue = residues[i];
Rotamer[] rotamers = residue.getRotamers(library);
int nr = rotamers.length;
if (nr > 1) {
int nrot = 0;
for (int ri = 0; ri < nr; ri++) {
if (!eliminatedSingles[i][ri]) {
nrot++;
}
}
permutations *= rotamers.length;
if (nrot > 1) {
singletonPermutations *= nrot;
}
}
}
dryRun(residues, 0, currentRotamers);
double pairTotalElimination = singletonPermutations - (double) evaluatedPermutations;
double afterPairElim = singletonPermutations - pairTotalElimination;
if (evaluatedPermutations == 0) {
logger.severe(" No valid path through rotamer space found; try recomputing without pruning or using ensemble.");
}
if (master && printFiles && ensembleFile == null) {
File file = molecularAssembly.getFile();
String filename = FilenameUtils.removeExtension(file.getAbsolutePath());
ensembleFile = new File(filename + ".ens");
if (ensembleFile.exists()) {
for (int i = 2; i < 1000; i++) {
ensembleFile = new File(filename + ".ens_" + i);
if (!ensembleFile.exists()) {
break;
}
}
if (ensembleFile.exists()) {
logger.warning(format(" Versioning failed: appending to end of file %s", ensembleFile.getName()));
}
}
ensembleFilter = new PDBFilter(new File(ensembleFile.getName()), molecularAssembly, null, null);
logger.info(format(" Ensemble file: %s", ensembleFile.getName()));
}
logIfMaster(format("%30s %5s %30s %5s %30s %5s", "Condition", "|", "Number of Permutations Left", "|", "Removed", "|"));
logIfMaster(format("%s", " -------------------------------------------------------------------------------------------------------------"));
logIfMaster(format("%30s %5s %30s %5s %30s %5s", "No Eliminations", "|", permutations, "|", "", "|"));
logIfMaster(format("%30s %5s %30s %5s %30s %5s", "Single Eliminations", "|", singletonPermutations, "|", permutations - singletonPermutations, "|"));
logIfMaster(format("%30s %5s %30s %5s %30s %5s", "Pair Eliminations", "|", afterPairElim, "|", pairTotalElimination, "|"));
logIfMaster(format("%30s %5s %30s %5s %30s %5s", "Single and Pair Eliminations", "|", (double) evaluatedPermutations, "|", pairTotalElimination + (permutations - singletonPermutations), "|"));
logIfMaster(format("%s", " -------------------------------------------------------------------------------------------------------------\n"));
logIfMaster(format(" Energy of permutations:"));
logIfMaster(format("%s", " ----------------------------------------------------------------------------------"));
logIfMaster(format(" %12s %5s %25s %5s %25s %5s", "Permutation", "|", "Energy", "|", "Lowest Possible Energy", "|"));
logIfMaster(format("%s", " ----------------------------------------------------------------------------------"));
double e;
if (useMonteCarlo()) {
firstValidPerm(residues, 0, currentRotamers);
System.arraycopy(currentRotamers, 0, optimum, 0, nResidues);
rotamerOptimizationMC(residues, optimum, currentRotamers, nMCsteps, false, mcUseAll);
logIfMaster(" Ensembles not currently compatible with Monte Carlo search");
/**
* Not currently compatible with ensembles.
*/
} else {
double[] permutationEnergies = new double[evaluatedPermutations];
ensembleStates = new ArrayList<>();
e = rotamerOptimizationDEE(molecularAssembly, residues, 0, currentRotamers, Double.MAX_VALUE, optimum, permutationEnergies);
int[][] acceptedPermutations = new int[evaluatedPermutations][];
for (int i = 0; i < acceptedPermutations.length; i++) {
acceptedPermutations[i] = null;
}
logIfMaster(format("\n Checking permutations for distance < %5.3f kcal/mol from GMEC energy %10.8f kcal/mol", ensembleEnergy, e));
dryRunForEnsemble(residues, 0, currentRotamers, e, permutationEnergies, acceptedPermutations);
int numAcceptedPermutations = 0;
for (int i = 0; i < acceptedPermutations.length; i++) {
if (acceptedPermutations[i] != null) {
++numAcceptedPermutations;
logIfMaster(format(" Accepting permutation %d at %8.6f < %8.6f", i, permutationEnergies[i] - e, ensembleEnergy));
for (int j = 0; j < nResidues; j++) {
Residue residuej = residues[j];
Rotamer[] rotamersj = residuej.getRotamers(library);
RotamerLibrary.applyRotamer(residuej, rotamersj[acceptedPermutations[i][j]]);
}
ResidueState[] states = ResidueState.storeAllCoordinates(residues);
ensembleStates.add(new ObjectPair<>(states, permutationEnergies[i]));
if (printFiles && master) {
try {
FileWriter fw = new FileWriter(ensembleFile, true);
BufferedWriter bw = new BufferedWriter(fw);
bw.write(format("MODEL %d", numAcceptedPermutations));
for (int j = 0; j < 75; j++) {
bw.write(" ");
}
bw.newLine();
bw.flush();
ensembleFilter.writeFile(ensembleFile, true);
bw.write(format("ENDMDL"));
for (int j = 0; j < 64; j++) {
bw.write(" ");
}
bw.newLine();
bw.close();
} catch (IOException ex) {
logger.warning(format(" Exception writing to file: %s", ensembleFile.getName()));
}
}
}
}
logIfMaster(format(" Number of permutations within %5.3f kcal/mol of GMEC energy: %6.4e", ensembleEnergy, (double) numAcceptedPermutations));
ensembleStates.sort(null);
}
logIfMaster(format(" Final rotamers:"));
logIfMaster(format("%s", " --------------------------------------------------------------------------------------------"));
logIfMaster(format("%14s %3s %10s %3s %9s %3s %9s %3s %9s %3s", "Residue", "|", "Chi 1", "|", "Chi 2", "|", "Chi 3", "|", "Chi 4", "|"));
logIfMaster(format("%s", " --------------------------------------------------------------------------------------------"));
for (int i = 0; i < nResidues; i++) {
Residue residue = residues[i];
Rotamer[] rotamers = residue.getRotamers(library);
int ri = optimum[i];
Rotamer rotamer = rotamers[ri];
logIfMaster(format(" %c (%7s,2d) | %s", residue.getChainID(), residue, ri, rotamer.toAngleString()));
RotamerLibrary.applyRotamer(residue, rotamer);
}
logIfMaster(format("%s", " --------------------------------------------------------------------------------------------\n"));
double sumSelfEnergy = 0;
double sumPairEnergy = 0;
double sumTrimerEnergy = 0;
for (int i = 0; i < nResidues; i++) {
int ri = optimum[i];
sumSelfEnergy += getSelf(i, ri);
logIfMaster(format(" Final self Energy (%8s,%2d): %12.4f", residues[i].toFormattedString(false, true), ri, getSelf(i, ri)));
}
for (int i = 0; i < nResidues - 1; i++) {
int ri = optimum[i];
for (int j = i + 1; j < nResidues; j++) {
int rj = optimum[j];
sumPairEnergy += get2Body(i, ri, j, rj);
if (get2Body(i, ri, j, rj) > 10.0) {
logIfMaster(format(" Large Final Pair Energy (%8s,%2d) (%8s,%2d): %12.4f", residues[i].toFormattedString(false, true), ri, residues[j].toFormattedString(false, true), rj, get2Body(i, ri, j, rj)));
}
}
}
try {
e = currentEnergy(residueList);
} catch (ArithmeticException ex) {
e = Double.NaN;
logger.severe(String.format(" Exception %s in calculating current energy at the end of triples", ex.toString()));
}
logIfMaster(format(" %12s %5s %25s %5s %25s %5s", "Type", "|", "Energy", "|", "Lowest Possible Energy", "|"));
logIfMaster(format("%s", " ----------------------------------------------------------------------------------"));
logIfMaster(format(" %12s %5s %25f %5s %25s %5s", "Self:", "|", sumSelfEnergy, "|", "", "|"));
logIfMaster(format(" %12s %5s %25f %5s %25s %5s", "Pair:", "|", sumPairEnergy, "|", "", "|"));
double approximateEnergy = backboneEnergy + sumSelfEnergy + sumPairEnergy;
if (threeBodyTerm) {
for (int i = 0; i < nResidues - 2; i++) {
int ri = optimum[i];
for (int j = i + 1; j < nResidues - 1; j++) {
int rj = optimum[j];
for (int k = j + 1; k < nResidues; k++) {
int rk = optimum[k];
try {
sumTrimerEnergy += get3Body(i, ri, j, rj, k, rk);
} catch (Exception ex) {
logger.warning(ex.toString());
}
}
}
}
approximateEnergy += sumTrimerEnergy;
double higherOrderEnergy = e - sumSelfEnergy - sumPairEnergy - sumTrimerEnergy - backboneEnergy;
logIfMaster(format(" %12s %5s %25f %5s %25s %5s", "Trimer:", "|", sumTrimerEnergy, "|", "", "|"));
logIfMaster(format(" %12s %5s %25f %5s %25s %5s", "Neglected:", "|", higherOrderEnergy, "|", "", "|"));
} else {
double higherOrderEnergy = e - sumSelfEnergy - sumPairEnergy - backboneEnergy;
logIfMaster(format(" %12s %5s %25f %5s %25s %5s", "Neglected:", "|", higherOrderEnergy, "|", "", "|"));
}
logIfMaster(format(" %12s %5s %25f %5s %25s %5s", "Approximate:", "|", approximateEnergy, "|", "", "|"));
logIfMaster(format("%s", " ----------------------------------------------------------------------------------\n"));
return e;
}
/**
* Permutations used only to set maximum bound on ensembleNumber, thus
* it is safe here to put that value in a 32-bit int.
*/
int nPerms = 1;
for (int i = 0; i < nResidues; i++) {
Residue residue = residues[i];
Rotamer[] rotamers = residue.getRotamers(library);
int nr = rotamers.length;
if (nr > 1) {
nPerms *= rotamers.length;
}
if (nPerms > ensembleNumber) {
break;
}
}
if (nPerms < ensembleNumber) {
logger.info(format(" Requested an ensemble of %d, but only %d permutations exist; returning full ensemble", ensembleNumber, nPerms));
ensembleNumber = nPerms;
}
while (currentEnsemble != ensembleNumber) {
if (monteCarlo) {
logIfMaster(" Ensemble search not currently compatible with Monte Carlo");
ensembleNumber = 1;
}
if (iterations == 0) {
applyEliminationCriteria(residues, true, true);
} else {
applyEliminationCriteria(residues, false, false);
}
if (x == null) {
Atom[] atoms = molecularAssembly.getAtomArray();
int nAtoms = atoms.length;
x = new double[nAtoms * 3];
}
/**
* Compute the number of permutations without eliminating dead-ends
* and compute the number of permutations using singleton
* elimination.
*/
double permutations = 1;
double singletonPermutations = 1;
for (int i = 0; i < nResidues; i++) {
Residue residue = residues[i];
Rotamer[] rotamers = residue.getRotamers(library);
int nr = rotamers.length;
if (nr > 1) {
int nrot = 0;
for (int ri = 0; ri < nr; ri++) {
if (!eliminatedSingles[i][ri]) {
nrot++;
}
}
permutations *= rotamers.length;
if (nrot > 1) {
singletonPermutations *= nrot;
}
}
}
logIfMaster(format(" Collecting Permutations:"));
logIfMaster(format("%s", " -------------------------------------------------------------------------------------------------------------"));
dryRun(residues, 0, currentRotamers);
double pairTotalElimination = singletonPermutations - (double) evaluatedPermutations;
double afterPairElim = singletonPermutations - pairTotalElimination;
currentEnsemble = (int) evaluatedPermutations;
if (ensembleNumber == 1 && currentEnsemble == 0) {
logger.severe(" No valid path through rotamer space found; try recomputing without pruning or using ensemble.");
}
if (ensembleNumber > 1) {
if (master && printFiles && ensembleFile == null) {
File file = molecularAssembly.getFile();
String filename = FilenameUtils.removeExtension(file.getAbsolutePath());
ensembleFile = new File(filename + ".ens");
if (ensembleFile.exists()) {
for (int i = 2; i < 1000; i++) {
ensembleFile = new File(filename + ".ens_" + i);
if (!ensembleFile.exists()) {
break;
}
}
if (ensembleFile.exists()) {
logger.warning(format(" Versioning failed: appending to end of file %s", ensembleFile.getName()));
}
}
ensembleFilter = new PDBFilter(new File(ensembleFile.getName()), molecularAssembly, null, null);
logger.info(format(" Ensemble file: %s", ensembleFile.getName()));
}
logIfMaster(format(" Ensemble Search Stats: (buffer: %5.3f, current: %d, target: %d)", ensembleBuffer, currentEnsemble, ensembleNumber));
}
if (ensembleNumber == 1 || finalTry) {
logIfMaster(format("%30s %5s %30s %5s %30s %5s", "Condition", "|", "Number of Permutations Left", "|", "Number of Permutations Removed", "|"));
logIfMaster(format("%s", " -------------------------------------------------------------------------------------------------------------"));
logIfMaster(format("%30s %5s %30s %5s %30s %5s", "No Eliminations", "|", permutations, "|", "", "|"));
logIfMaster(format("%30s %5s %30s %5s %30s %5s", "Single Eliminations", "|", singletonPermutations, "|", permutations - singletonPermutations, "|"));
logIfMaster(format("%30s %5s %30s %5s %30s %5s", "Pair Eliminations", "|", afterPairElim, "|", pairTotalElimination, "|"));
logIfMaster(format("%30s %5s %30s %5s %30s %5s", "Single and Pair Eliminations", "|", (double) evaluatedPermutations, "|", pairTotalElimination + (permutations - singletonPermutations), "|"));
logIfMaster(format("%s", " -------------------------------------------------------------------------------------------------------------\n"));
logIfMaster(format(" Energy of permutations:"));
logIfMaster(format("%s", " ----------------------------------------------------------------------------------"));
logIfMaster(format(" %12s %5s %25s %5s %25s %5s", "Permutation", "|", "Energy", "|", "Lowest Possible Energy", "|"));
logIfMaster(format("%s", " ----------------------------------------------------------------------------------"));
break;
}
if (Math.abs(currentEnsemble - ensembleNumber) < bestEnsembleTargetDiffThusFar) {
bestEnsembleTargetDiffThusFar = Math.abs(currentEnsemble - ensembleNumber);
bestBufferThusFar = ensembleBuffer;
}
if (currentEnsemble > ensembleNumber) {
ensembleBuffer -= ensembleBufferStep;
ensembleBufferStep -= (ensembleBufferStep * 0.01);
iterations++;
} else if (currentEnsemble < ensembleNumber) {
ensembleBuffer += ensembleBufferStep;
ensembleBufferStep -= (ensembleBufferStep * 0.01);
iterations++;
}
if (iterations > 100) {
if (currentEnsemble == 0) {
// TODO: Decide whether we like these next four lines. Has the potential to produce a crazy amount of permutations.
logIfMaster(" Ensemble still empty; increasing buffer energy.");
startingBuffer = 3 * startingBuffer;
setEnsemble(10, startingBuffer);
iterations = 0;
} else {
ensembleBuffer = bestBufferThusFar;
finalTry = true;
}
}
}
if (currentEnsemble == 0) {
logger.warning(" No valid rotamer permutations found; results will be unreliable. Try increasing the starting ensemble buffer.");
}
double[] permutationEnergyStub = null;
if (useMonteCarlo()) {
firstValidPerm(residues, 0, currentRotamers);
rotamerOptimizationMC(residues, optimum, currentRotamers, nMCsteps, false, mcUseAll);
} else {
rotamerOptimizationDEE(molecularAssembly, residues, 0, currentRotamers, Double.MAX_VALUE, optimum, permutationEnergyStub);
}
double[] residueEnergy = new double[nResidues];
double sumSelfEnergy = 0;
double sumLowSelfEnergy = 0;
logIfMaster(format("%s", " ----------------------------------------------------------------------------------\n"));
logIfMaster(format(" Energy contributions:"));
logIfMaster(format("%s", " -------------------------------------------------------------------------------------"));
logIfMaster(format(" %15s %5s %25s %5s %25s %5s", "Type", "|", "Energy", "|", "Lowest Possible Energy", "|"));
logIfMaster(format("%s", " -------------------------------------------------------------------------------------"));
for (int i = 0; i < nResidues; i++) {
int ri = optimum[i];
Residue residue = residues[i];
Rotamer[] rotamers = residue.getRotamers(library);
turnOnAtoms(residue);
RotamerLibrary.applyRotamer(residue, rotamers[ri]);
double self = getSelf(i, ri);
residueEnergy[i] = self;
sumSelfEnergy += self;
double lowest = lowestSelfEnergy(residues, i);
sumLowSelfEnergy += lowest;
if (self - lowest > 10.0) {
logIfMaster(format(" %15s %5s %25f %5s %25f %5s", "Self (" + residues[i] + "," + ri + "):", "|", self, "|", lowest, "|"));
}
}
double sumPairEnergy = 0.0;
double sumLowPairEnergy = 0.0;
double[] resPairEnergy = new double[nResidues];
double[] lowPairEnergy = new double[nResidues];
for (int i = 0; i < nResidues - 1; i++) {
StringBuilder sb = new StringBuilder();
int ri = optimum[i];
double sumPairEnergyI = 0;
double sumLowPairEnergyI = 0;
for (int j = i + 1; j < nResidues; j++) {
int rj = optimum[j];
double pair = get2Body(i, ri, j, rj);
residueEnergy[i] += 0.5 * pair;
residueEnergy[j] += 0.5 * pair;
sumPairEnergy += pair;
sumPairEnergyI += pair;
double lowest = lowestPairEnergy(residues, i, ri, j);
sumLowPairEnergy += lowest;
sumLowPairEnergyI += lowest;
resPairEnergy[i] = 0.5 * pair;
resPairEnergy[j] = 0.5 * pair;
lowPairEnergy[i] = 0.5 * lowest;
lowPairEnergy[j] = 0.5 * lowest;
if (resPairEnergy[i] - lowPairEnergy[i] > 10.0) {
sb.append(format(" Pair Energy (%8s,%2d) (%8s,%2d): %12.4f (Lowest: %12.4f).\n", residues[i].toFormattedString(false, true), ri, residues[j].toFormattedString(false, true), rj, pair, lowest));
}
}
if (sumPairEnergyI - sumLowPairEnergyI > 10.0) {
logIfMaster(format(" %15s %5s %25f %5s %25f %5s", "Self (" + residues[i] + "," + ri + "):", "|", sumPairEnergyI, "|", sumLowPairEnergyI, "|"));
sb.trimToSize();
if (!sb.toString().isEmpty()) {
logIfMaster(sb.toString());
}
}
}
double e = Double.NaN;
try {
e = currentEnergy(residueList);
} catch (ArithmeticException ex) {
logger.severe(String.format(" Exception %s in calculating current energy at the end of self and pairs", ex.toString()));
}
logIfMaster(format(" %15s %5s %25f %5s %25s %5s", "Backbone:", "|", backboneEnergy, "|", "", "|"));
logIfMaster(format(" %15s %5s %25f %5s %25f %5s", "Self:", "|", sumSelfEnergy, "|", sumLowSelfEnergy, "|"));
logIfMaster(format(" %15s %5s %25f %5s %25f %5s", "Pair:", "|", sumPairEnergy, "|", sumLowPairEnergy, "|"));
double approximateEnergy = backboneEnergy + sumSelfEnergy + sumPairEnergy;
double sumTrimerEnergy = 0;
if (threeBodyTerm) {
for (int i = 0; i < nResidues - 2; i++) {
int ri = optimum[i];
for (int j = i + 1; j < nResidues - 1; j++) {
int rj = optimum[j];
for (int k = j + 1; k < nResidues; k++) {
int rk = optimum[k];
try {
double triple = get3Body(i, ri, j, rj, k, rk);
double thirdTrip = triple / 3.0;
residueEnergy[i] += thirdTrip;
residueEnergy[j] += thirdTrip;
residueEnergy[k] += thirdTrip;
sumTrimerEnergy += triple;
} catch (Exception ex) {
logger.warning(ex.toString());
}
}
}
}
approximateEnergy += sumTrimerEnergy;
double higherOrderEnergy = e - sumSelfEnergy - sumPairEnergy - sumTrimerEnergy - backboneEnergy;
logIfMaster(format(" %15s %5s %25f %5s %25s %5s", "Trimer:", "|", sumTrimerEnergy, "|", "", "|"));
logIfMaster(format(" %15s %5s %25f %5s %25s %5s", "Neglected:", "|", higherOrderEnergy, "|", "", "|"));
} else {
double higherOrderEnergy = e - sumSelfEnergy - sumPairEnergy - backboneEnergy;
logIfMaster(format(" %15s %5s %25f %5s %25s %5s", "Neglected:", "|", higherOrderEnergy, "|", "", "|"));
}
logIfMaster(format(" %15s %5s %25f %5s %25s %5s", "Approximate:", "|", approximateEnergy, "|", "", "|"));
logIfMaster(format("%s", " -------------------------------------------------------------------------------------\n"));
logIfMaster(format(" Final rotamers:"));
logIfMaster(format("%s", " --------------------------------------------------------------------------------------------"));
logIfMaster(format("%17s %3s %10s %3s %9s %3s %9s %3s %9s %3s %10s %3s", "Residue", "|", "Chi 1", "|", "Chi 2", "|", "Chi 3", "|", "Chi 4", "|", "Energy", "|"));
logIfMaster(format("%s", " --------------------------------------------------------------------------------------------"));
for (int i = 0; i < nResidues; i++) {
Residue residue = residues[i];
Rotamer[] rotamers = residue.getRotamers(library);
int ri = optimum[i];
Rotamer rotamer = rotamers[ri];
logIfMaster(format(" %3d %c (%7s,%2d) | %s %12.4f |", i + 1, residue.getChainID(), residue, ri, rotamer.toAngleString(), residueEnergy[i]));
RotamerLibrary.applyRotamer(residue, rotamer);
}
logIfMaster(format("%s", " --------------------------------------------------------------------------------------------\n"));
return e;
}
Aggregations