use of htsjdk.samtools.SAMRecordCoordinateComparator in project gridss by PapenfussLab.
the class AutoClosingMergedIteratorTest method should_terminate_async_reader_thread_for_underlying_stream.
@Test
public void should_terminate_async_reader_thread_for_underlying_stream() throws InterruptedException {
List<SAMRecord> list = ImmutableList.of(Read(0, 1, 1), Read(0, 1, 1), Read(0, 1, 1), Read(0, 1, 1), Read(0, 2, 1));
AsyncBufferedIterator<SAMRecord> abi = new AsyncBufferedIterator<SAMRecord>(list.iterator(), 1, 1);
AutoClosingMergedIterator<SAMRecord> merged = new AutoClosingMergedIterator<SAMRecord>(ImmutableList.of(abi), new SAMRecordCoordinateComparator());
merged.next();
Thread.sleep(50);
assertNotNull(AsyncBufferedIteratorTest.getThreadWithName(abi.getBackgroundThreadName()));
merged.close();
Thread.sleep(50);
assertNull(AsyncBufferedIteratorTest.getThreadWithName(abi.getBackgroundThreadName()));
}
use of htsjdk.samtools.SAMRecordCoordinateComparator in project jvarkit by lindenb.
the class GcPercentAndDepth method doWork.
@Override
public int doWork(final List<String> args) {
if (this.windowSize <= 0) {
LOG.error("Bad window size.");
return -1;
}
if (this.windowStep <= 0) {
LOG.error("Bad window step.");
return -1;
}
if (this.refFile == null) {
LOG.error("Undefined REF File");
return -1;
}
if (args.isEmpty()) {
LOG.error("Illegal Number of arguments.");
return -1;
}
ReferenceGenome indexedFastaSequenceFile = null;
List<SamReader> readers = new ArrayList<SamReader>();
PrintWriter out = null;
try {
LOG.info("Loading " + this.refFile);
indexedFastaSequenceFile = new ReferenceGenomeFactory().openFastaFile(this.refFile);
this.samSequenceDictionary = indexedFastaSequenceFile.getDictionary();
if (this.samSequenceDictionary == null) {
LOG.error("Cannot get sequence dictionary for " + this.refFile);
return -1;
}
out = super.openFileOrStdoutAsPrintWriter(outPutFile);
Set<String> all_samples = new TreeSet<String>();
/* create input, collect sample names */
for (int optind = 0; optind < args.size(); ++optind) {
LOG.info("Opening " + args.get(optind));
final SamReader samFileReaderScan = super.openSamReader(args.get(optind));
readers.add(samFileReaderScan);
final SAMFileHeader header = samFileReaderScan.getFileHeader();
if (!SequenceUtil.areSequenceDictionariesEqual(this.samSequenceDictionary, header.getSequenceDictionary())) {
LOG.error(JvarkitException.DictionariesAreNotTheSame.getMessage(this.samSequenceDictionary, header.getSequenceDictionary()));
return -1;
}
for (final SAMReadGroupRecord g : header.getReadGroups()) {
final String sample = this.partition.apply(g);
if (StringUtil.isBlank(sample)) {
LOG.warning("Read group " + g.getId() + " has no sample in merged dictionary");
continue;
}
all_samples.add(sample);
}
}
LOG.info("N " + this.partition.name() + "=" + all_samples.size());
/* print header */
out.print("#");
if (!this.hide_genomic_index) {
out.print("id");
out.print("\t");
}
out.print("chrom");
out.print("\t");
out.print("start");
out.print("\t");
out.print("end");
out.print("\t");
out.print("GCPercent");
for (final String sample : all_samples) {
out.print("\t");
out.print(sample);
}
out.println();
final List<RegionCaptured> regionsCaptured = new ArrayList<RegionCaptured>();
if (bedFile != null) {
LOG.info("Reading BED:" + bedFile);
final BedLineCodec bedLineCodec = new BedLineCodec();
BufferedReader r = IOUtils.openFileForBufferedReading(bedFile);
r.lines().filter(L -> !L.startsWith("#")).filter(L -> !StringUtil.isBlank(L)).map(L -> bedLineCodec.decode(L)).filter(B -> B != null).forEach(B -> {
final SAMSequenceRecord ssr = this.samSequenceDictionary.getSequence(B.getContig());
if (ssr == null) {
LOG.warning("Cannot resolve " + B.getContig());
return;
}
final RegionCaptured roi = new RegionCaptured(ssr, B.getStart() - 1, B.getEnd());
regionsCaptured.add(roi);
});
CloserUtil.close(r);
LOG.info("end Reading BED:" + bedFile);
Collections.sort(regionsCaptured);
} else {
LOG.info("No capture, peeking everything");
for (final SAMSequenceRecord ssr : this.samSequenceDictionary.getSequences()) {
final RegionCaptured roi = new RegionCaptured(ssr, 0, ssr.getSequenceLength());
regionsCaptured.add(roi);
}
}
final SAMSequenceDictionaryProgress progress = new SAMSequenceDictionaryProgress(this.samSequenceDictionary).logger(LOG);
ReferenceContig genomicSequence = null;
for (final RegionCaptured roi : regionsCaptured) {
if (genomicSequence == null || !genomicSequence.hasName(roi.getContig())) {
genomicSequence = indexedFastaSequenceFile.getContig(roi.getContig());
if (genomicSequence == null) {
LOG.error(JvarkitException.ContigNotFoundInDictionary.getMessage(roi.getContig(), this.samSequenceDictionary));
return -1;
}
}
Map<String, int[]> sample2depth = new HashMap<String, int[]>();
Map<String, Double> sample2meanDepth = new HashMap<String, Double>();
for (final String sample : all_samples) {
int[] depth = new int[roi.length()];
Arrays.fill(depth, 0);
sample2depth.put(sample, depth);
}
List<CloseableIterator<SAMRecord>> iterators = new ArrayList<CloseableIterator<SAMRecord>>();
for (final SamReader r : readers) {
iterators.add(r.query(roi.getContig(), roi.getStart(), roi.getEnd(), false));
}
final MergingIterator<SAMRecord> merginIter = new MergingIterator<>(new SAMRecordCoordinateComparator(), iterators);
while (merginIter.hasNext()) {
final SAMRecord rec = merginIter.next();
if (rec.getReadUnmappedFlag())
continue;
if (this.filter.filterOut(rec))
continue;
final String sample = this.partition.getPartion(rec, null);
if (sample == null)
continue;
final int[] depth = sample2depth.get(sample);
if (depth == null)
continue;
final Cigar cigar = rec.getCigar();
if (cigar == null)
continue;
int refpos1 = rec.getAlignmentStart();
for (final CigarElement ce : cigar.getCigarElements()) {
final CigarOperator op = ce.getOperator();
if (!op.consumesReferenceBases())
continue;
if (op.consumesReadBases()) {
for (int i = 0; i < ce.getLength(); ++i) {
if (refpos1 + i < roi.getStart())
continue;
if (refpos1 + i > roi.getEnd())
break;
depth[refpos1 + i - roi.getStart()]++;
}
}
refpos1 += ce.getLength();
}
}
merginIter.close();
for (final RegionCaptured.SlidingWindow win : roi) {
double total = 0f;
int countN = 0;
for (int pos1 = win.getStart(); pos1 <= win.getEnd(); ++pos1) {
switch(genomicSequence.charAt(pos1 - 1)) {
case 'c':
case 'C':
case 'g':
case 'G':
case 's':
case 'S':
{
total++;
break;
}
case 'n':
case 'N':
countN++;
break;
default:
break;
}
}
if (skip_if_contains_N && countN > 0)
continue;
double GCPercent = total / (double) win.length();
int max_depth_for_win = 0;
sample2meanDepth.clear();
for (final String sample : all_samples) {
int[] depth = sample2depth.get(sample);
double sum = 0;
for (int pos = win.getStart(); pos < win.getEnd() && (pos - roi.getStart()) < depth.length; ++pos) {
sum += depth[pos - roi.getStart()];
}
double mean = (sum / (double) depth.length);
max_depth_for_win = Math.max(max_depth_for_win, (int) mean);
sample2meanDepth.put(sample, mean);
}
if (max_depth_for_win < this.min_depth)
continue;
if (!this.hide_genomic_index) {
out.print(win.getGenomicIndex());
out.print("\t");
}
out.print(win.getContig());
out.print("\t");
out.print(win.getStart() - 1);
out.print("\t");
out.print(win.getEnd());
out.print("\t");
out.printf("%.2f", GCPercent);
for (String sample : all_samples) {
out.print("\t");
out.printf("%.2f", (double) sample2meanDepth.get(sample));
}
out.println();
}
}
progress.finish();
out.flush();
return 0;
} catch (Exception err) {
LOG.error(err);
return -1;
} finally {
for (SamReader r : readers) CloserUtil.close(r);
CloserUtil.close(indexedFastaSequenceFile);
CloserUtil.close(out);
}
}
use of htsjdk.samtools.SAMRecordCoordinateComparator in project jvarkit by lindenb.
the class Biostar78285 method doWork.
@Override
public int doWork(final List<String> args) {
if (this.gc_percent_window < 1) {
LOG.error("Bad GC% window size:" + this.gc_percent_window);
return -1;
}
final List<File> bamFiles = IOUtil.unrollFiles(args.stream().map(F -> new File(F)).collect(Collectors.toCollection(HashSet::new)), ".bam");
SAMSequenceDictionary dict = null;
final List<SamReader> samReaders = new ArrayList<>();
final List<CloseableIterator<SAMRecord>> samIterators = new ArrayList<>();
final TreeSet<String> samples = new TreeSet<>();
final String DEFAULT_PARTITION = "UNDEFINED_PARTITION";
IndexedFastaSequenceFile indexedFastaSequenceFile = null;
VariantContextWriter out = null;
try {
final SamReaderFactory samReaderFactory = SamReaderFactory.makeDefault().validationStringency(ValidationStringency.LENIENT);
for (final File bamFile : bamFiles) {
LOG.info("Opening " + bamFile);
final SamReader samReader = samReaderFactory.open(bamFile);
samReaders.add(samReader);
final SAMFileHeader header = samReader.getFileHeader();
if (header == null) {
LOG.error("No header in " + bamFile);
return -1;
}
if (header.getSortOrder() != SortOrder.coordinate) {
LOG.error("Sam file " + bamFile + " is not sorted on coordinate :" + header.getSortOrder());
return -1;
}
samples.addAll(header.getReadGroups().stream().map(RG -> this.partition.apply(RG, DEFAULT_PARTITION)).collect(Collectors.toSet()));
final SAMSequenceDictionary currDict = header.getSequenceDictionary();
if (currDict == null) {
LOG.error("SamFile doesn't contain a SAMSequenceDictionary : " + bamFile);
return -1;
}
if (dict == null) {
dict = currDict;
} else if (!SequenceUtil.areSequenceDictionariesEqual(dict, currDict)) {
LOG.error(JvarkitException.DictionariesAreNotTheSame.getMessage(dict, currDict));
return -1;
}
}
if (samReaders.isEmpty()) {
LOG.error("no bam");
return -1;
}
if (dict == null) {
LOG.error("no dictionary");
return -1;
}
final QueryInterval[] intervals;
if (this.captureBed != null) {
LOG.info("Opening " + this.captureBed);
ContigNameConverter.setDefaultAliases(dict);
final List<QueryInterval> L = new ArrayList<>();
final BedLineCodec codec = new BedLineCodec();
final LineIterator li = IOUtils.openFileForLineIterator(this.captureBed);
while (li.hasNext()) {
final BedLine bed = codec.decode(li.next());
if (bed == null)
continue;
final QueryInterval q = bed.toQueryInterval(dict);
L.add(q);
}
CloserUtil.close(li);
intervals = QueryInterval.optimizeIntervals(L.toArray(new QueryInterval[L.size()]));
} else {
intervals = null;
}
for (final SamReader samReader : samReaders) {
LOG.info("querying " + samReader.getResourceDescription());
final CloseableIterator<SAMRecord> iter;
if (intervals == null) {
iter = samReader.iterator();
} else {
iter = samReader.queryOverlapping(intervals);
}
samIterators.add(new FilterIterator<SAMRecord>(iter, R -> !R.getReadUnmappedFlag() && !filter.filterOut(R)));
}
if (this.refFile != null) {
LOG.info("opening " + refFile);
indexedFastaSequenceFile = new IndexedFastaSequenceFile(this.refFile);
final SAMSequenceDictionary refdict = indexedFastaSequenceFile.getSequenceDictionary();
ContigNameConverter.setDefaultAliases(refdict);
if (refdict == null) {
throw new JvarkitException.FastaDictionaryMissing(this.refFile);
}
if (!SequenceUtil.areSequenceDictionariesEqual(dict, refdict)) {
LOG.error(JvarkitException.DictionariesAreNotTheSame.getMessage(dict, refdict));
return -1;
}
}
out = openVariantContextWriter(this.outputFile);
final Set<VCFHeaderLine> metaData = new HashSet<>();
VCFStandardHeaderLines.addStandardFormatLines(metaData, true, VCFConstants.DEPTH_KEY, VCFConstants.GENOTYPE_KEY);
VCFStandardHeaderLines.addStandardInfoLines(metaData, true, VCFConstants.DEPTH_KEY);
metaData.add(new VCFFormatHeaderLine("DF", 1, VCFHeaderLineType.Integer, "Number of Reads on plus strand"));
metaData.add(new VCFFormatHeaderLine("DR", 1, VCFHeaderLineType.Integer, "Number of Reads on minus strand"));
metaData.add(new VCFInfoHeaderLine("AVG_DP", 1, VCFHeaderLineType.Float, "Mean depth"));
metaData.add(new VCFInfoHeaderLine("MEDIAN_DP", 1, VCFHeaderLineType.Float, "Median depth"));
metaData.add(new VCFInfoHeaderLine("MIN_DP", 1, VCFHeaderLineType.Integer, "Min depth"));
metaData.add(new VCFInfoHeaderLine("MAX_DP", 1, VCFHeaderLineType.Integer, "Max depth"));
metaData.add(new VCFHeaderLine(Biostar78285.class.getSimpleName() + ".SamFilter", this.filter.toString()));
for (final Integer treshold : this.minDepthTresholds) {
metaData.add(new VCFFilterHeaderLine("DP_LT_" + treshold, "All genotypes have DP< " + treshold));
metaData.add(new VCFInfoHeaderLine("NUM_DP_LT_" + treshold, 1, VCFHeaderLineType.Integer, "Number of genotypes having DP< " + treshold));
metaData.add(new VCFInfoHeaderLine("FRACT_DP_LT_" + treshold, 1, VCFHeaderLineType.Float, "Fraction of genotypes having DP< " + treshold));
}
if (indexedFastaSequenceFile != null) {
metaData.add(new VCFInfoHeaderLine("GC_PERCENT", 1, VCFHeaderLineType.Integer, "GC% window_size:" + this.gc_percent_window));
}
final List<Allele> refAlleles = Collections.singletonList(Allele.create("N", true));
final List<Allele> NO_CALLS = Arrays.asList(Allele.NO_CALL, Allele.NO_CALL);
final VCFHeader vcfHeader = new VCFHeader(metaData, samples);
vcfHeader.setSequenceDictionary(dict);
out.writeHeader(vcfHeader);
final SAMRecordCoordinateComparator samRecordCoordinateComparator = new SAMRecordCoordinateComparator();
final PeekableIterator<SAMRecord> peekIter = new PeekableIterator<>(new MergingIterator<>((R1, R2) -> samRecordCoordinateComparator.fileOrderCompare(R1, R2), samIterators));
final SAMSequenceDictionaryProgress progress = new SAMSequenceDictionaryProgress(dict);
for (final SAMSequenceRecord ssr : dict.getSequences()) {
final IntervalTree<Boolean> capturePos;
if (intervals != null) {
if (!Arrays.stream(intervals).anyMatch(I -> I.referenceIndex == ssr.getSequenceIndex())) {
continue;
}
capturePos = new IntervalTree<>();
Arrays.stream(intervals).filter(I -> I.referenceIndex == ssr.getSequenceIndex()).forEach(I -> capturePos.put(I.start, I.end, true));
;
} else {
capturePos = null;
}
final GenomicSequence genomicSequence;
if (indexedFastaSequenceFile != null && indexedFastaSequenceFile.getSequenceDictionary().getSequence(ssr.getSequenceName()) != null) {
genomicSequence = new GenomicSequence(indexedFastaSequenceFile, ssr.getSequenceName());
} else {
genomicSequence = null;
}
final List<SAMRecord> buffer = new ArrayList<>();
for (int ssr_pos = 1; ssr_pos <= ssr.getSequenceLength(); ++ssr_pos) {
if (capturePos != null && !capturePos.overlappers(ssr_pos, ssr_pos).hasNext())
continue;
progress.watch(ssr.getSequenceName(), ssr_pos);
while (peekIter.hasNext()) {
final SAMRecord rec = peekIter.peek();
if (rec.getReadUnmappedFlag()) {
// consumme
peekIter.next();
continue;
}
if (this.filter.filterOut(rec)) {
// consumme
peekIter.next();
continue;
}
if (rec.getReferenceIndex() < ssr.getSequenceIndex()) {
throw new IllegalStateException("should not happen");
}
if (rec.getReferenceIndex() > ssr.getSequenceIndex()) {
break;
}
if (rec.getAlignmentEnd() < ssr_pos) {
throw new IllegalStateException("should not happen");
}
if (rec.getAlignmentStart() > ssr_pos) {
break;
}
buffer.add(peekIter.next());
}
int x = 0;
while (x < buffer.size()) {
final SAMRecord R = buffer.get(x);
if (R.getReferenceIndex() != ssr.getSequenceIndex() || R.getAlignmentEnd() < ssr_pos) {
buffer.remove(x);
} else {
x++;
}
}
final Map<String, PosInfo> count = samples.stream().map(S -> new PosInfo(S)).collect(Collectors.toMap(P -> P.sample, Function.identity()));
for (final SAMRecord rec : buffer) {
if (rec.getReferenceIndex() != ssr.getSequenceIndex())
throw new IllegalStateException("should not happen");
if (rec.getAlignmentEnd() < ssr_pos)
continue;
if (rec.getAlignmentStart() > ssr_pos)
continue;
final Cigar cigar = rec.getCigar();
if (cigar == null)
continue;
int refpos = rec.getAlignmentStart();
final String sample = this.partition.getPartion(rec, DEFAULT_PARTITION);
for (final CigarElement ce : cigar.getCigarElements()) {
if (refpos > ssr_pos)
break;
final CigarOperator op = ce.getOperator();
if (op.consumesReferenceBases()) {
if (op.consumesReadBases()) {
if (refpos <= ssr_pos && ssr_pos <= refpos + ce.getLength()) {
final PosInfo posInfo = count.get(sample);
if (posInfo != null) {
posInfo.dp++;
if (rec.getReadNegativeStrandFlag()) {
posInfo.negative_strand++;
}
}
break;
}
}
refpos += ce.getLength();
}
}
}
final VariantContextBuilder vcb = new VariantContextBuilder();
final Set<String> filters = new HashSet<>();
vcb.chr(ssr.getSequenceName());
vcb.start(ssr_pos);
vcb.stop(ssr_pos);
if (genomicSequence == null) {
vcb.alleles(refAlleles);
} else {
vcb.alleles(Collections.singletonList(Allele.create((byte) genomicSequence.charAt(ssr_pos - 1), true)));
final GenomicSequence.GCPercent gcp = genomicSequence.getGCPercent(Math.max((ssr_pos - 1) - this.gc_percent_window, 0), Math.min(ssr_pos + this.gc_percent_window, ssr.getSequenceLength()));
if (!gcp.isEmpty()) {
vcb.attribute("GC_PERCENT", gcp.getGCPercentAsInteger());
}
}
vcb.attribute(VCFConstants.DEPTH_KEY, (int) count.values().stream().mapToInt(S -> S.dp).sum());
vcb.genotypes(count.values().stream().map(C -> new GenotypeBuilder(C.sample, NO_CALLS).DP((int) C.dp).attribute("DR", C.negative_strand).attribute("DF", C.dp - C.negative_strand).make()).collect(Collectors.toList()));
for (final Integer treshold : this.minDepthTresholds) {
final int count_lt = (int) count.values().stream().filter(S -> S.dp < treshold).count();
if (count_lt == samples.size()) {
filters.add("DP_LT_" + treshold);
}
vcb.attribute("NUM_DP_LT_" + treshold, count_lt);
if (!samples.isEmpty()) {
vcb.attribute("FRACT_DP_LT_" + treshold, count_lt / (float) samples.size());
}
}
if (!samples.isEmpty()) {
final int[] array = count.values().stream().mapToInt(S -> S.dp).toArray();
vcb.attribute("AVG_DP", Percentile.average().evaluate(array));
vcb.attribute("MEDIAN_DP", Percentile.median().evaluate(array));
vcb.attribute("MIN_DP", (int) Percentile.min().evaluate(array));
vcb.attribute("MAX_DP", (int) Percentile.max().evaluate(array));
}
if (filters.isEmpty()) {
vcb.passFilters();
} else {
vcb.filters(filters);
}
out.add(vcb.make());
}
}
progress.finish();
peekIter.close();
out.close();
out = null;
return 0;
} catch (final Exception err) {
LOG.error(err);
return -1;
} finally {
CloserUtil.close(out);
CloserUtil.close(samIterators);
CloserUtil.close(samReaders);
CloserUtil.close(indexedFastaSequenceFile);
}
}
Aggregations