use of io.confluent.ksql.schema.ksql.types.SqlType in project ksql by confluentinc.
the class QueryProjectNode method selectOutputSchema.
private LogicalSchema selectOutputSchema(final MetaStore metaStore, final List<SelectExpression> selectExpressions, final boolean isWindowed) {
final Builder schemaBuilder = LogicalSchema.builder();
final LogicalSchema parentSchema = getSource().getSchema();
// Copy meta & key columns into the value schema as SelectValueMapper expects it:
final LogicalSchema schema = parentSchema.withPseudoAndKeyColsInValue(isWindowed, ksqlConfig);
final ExpressionTypeManager expressionTypeManager = new ExpressionTypeManager(schema, metaStore);
for (final SelectExpression select : selectExpressions) {
final SqlType type = expressionTypeManager.getExpressionSqlType(select.getExpression());
if (parentSchema.isKeyColumn(select.getAlias()) || select.getAlias().equals(SystemColumns.WINDOWSTART_NAME) || select.getAlias().equals(SystemColumns.WINDOWEND_NAME)) {
schemaBuilder.keyColumn(select.getAlias(), type);
} else {
schemaBuilder.valueColumn(select.getAlias(), type);
}
}
return schemaBuilder.build();
}
use of io.confluent.ksql.schema.ksql.types.SqlType in project ksql by confluentinc.
the class LogicalPlanner method buildAggregateSchema.
private LogicalSchema buildAggregateSchema(final PlanNode sourcePlanNode, final GroupBy groupBy, final List<SelectExpression> projectionExpressions) {
final LogicalSchema sourceSchema = sourcePlanNode.getSchema();
final LogicalSchema projectionSchema = SelectionUtil.buildProjectionSchema(sourceSchema.withPseudoAndKeyColsInValue(analysis.getWindowExpression().isPresent(), ksqlConfig), projectionExpressions, metaStore);
final List<Expression> groupByExps = groupBy.getGroupingExpressions();
final Function<Expression, Optional<ColumnName>> selectResolver = expression -> {
final List<ColumnName> foundInProjection = projectionExpressions.stream().filter(e -> e.getExpression().equals(expression)).map(SelectExpression::getAlias).collect(Collectors.toList());
switch(foundInProjection.size()) {
case 0:
return Optional.empty();
case 1:
return Optional.of(foundInProjection.get(0));
default:
final String keys = GrammaticalJoiner.and().join(foundInProjection);
throw new KsqlException("The projection contains a key column more than once: " + keys + "." + System.lineSeparator() + "Each key column must only be in the projection once. " + "If you intended to copy the key into the value, then consider using the " + AsValue.NAME + " function to indicate which key reference should be copied.");
}
};
final List<Column> valueColumns;
if (analysis.getInto().isPresent()) {
// Persistent query:
final Set<ColumnName> keyColumnNames = groupBy.getGroupingExpressions().stream().map(selectResolver).filter(Optional::isPresent).map(Optional::get).collect(Collectors.toSet());
valueColumns = projectionSchema.value().stream().filter(col -> !keyColumnNames.contains(col.name())).collect(Collectors.toList());
if (valueColumns.isEmpty()) {
throw new KsqlException("The projection contains no value columns.");
}
} else {
// Transient query:
// Transient queries only return value columns, so must have key columns in the value:
valueColumns = projectionSchema.columns();
}
final Builder builder = LogicalSchema.builder();
final ExpressionTypeManager typeManager = new ExpressionTypeManager(sourceSchema, metaStore);
for (final Expression expression : groupByExps) {
final SqlType keyType = typeManager.getExpressionSqlType(expression);
final ColumnName keyName = selectResolver.apply(expression).orElseGet(() -> expression instanceof ColumnReferenceExp ? ((ColumnReferenceExp) expression).getColumnName() : ColumnNames.uniqueAliasFor(expression, sourceSchema));
builder.keyColumn(keyName, keyType);
}
return builder.valueColumns(valueColumns).build();
}
use of io.confluent.ksql.schema.ksql.types.SqlType in project ksql by confluentinc.
the class SelectionUtil method buildProjectionSchema.
/*
* The algorithm behind this method feels unnecessarily complicated and is begging
* for someone to come along and improve it, but until that time here is
* a description of what's going on.
*
* Essentially, we need to build a logical schema that mirrors the physical
* schema until https://github.com/confluentinc/ksql/issues/6374 is addressed.
* That means that the keys must be ordered in the same way as the parent schema
* (e.g. if the source schema was K1 INT KEY, K2 INT KEY and the projection is
* SELECT K2, K1 this method will produce an output schema that is K1, K2
* despite the way that the keys were ordered in the projection) - see
* https://github.com/confluentinc/ksql/pull/7477 for context on the bug.
*
* But we cannot simply select all the keys and then the values, we must maintain
* the interleaving of key and values because transient queries return all columns
* to the user as "value columns". If someone issues a SELECT VALUE, * FROM FOO
* it is expected that VALUE shows up _before_ the key fields. This means we need to
* reorder the key columns within the list of projections without affecting the
* relative order the keys/values.
*
* To spice things up even further, there's the possibility that the same key is
* aliased multiple times (SELECT K1 AS X, K2 AS Y FROM ...), which is not supported
* but is verified later when building the final projection - so we maintain it here.
*
* Now on to the algorithm itself: we make two passes through the list of projections.
* The first pass builds a mapping from source key to all the projections for that key.
* We will use this mapping to sort the keys in the second pass. This mapping is two
* dimensional to address the possibility of the same key with multiple aliases.
*
* The second pass goes through the list of projections again and builds the logical schema,
* but this time if we encounter a projection that references a key column, we instead take
* it from the list we built in the first pass (in order defined by the parent schema).
*/
public static LogicalSchema buildProjectionSchema(final LogicalSchema parentSchema, final List<SelectExpression> projection, final FunctionRegistry functionRegistry) {
final ExpressionTypeManager expressionTypeManager = new ExpressionTypeManager(parentSchema, functionRegistry);
// keyExpressions[i] represents the expressions found in projection
// that are associated with parentSchema's key at index i
final List<List<SelectExpression>> keyExpressions = new ArrayList<>(parentSchema.key().size());
for (int i = 0; i < parentSchema.key().size(); i++) {
keyExpressions.add(new ArrayList<>());
}
// first pass to construct keyExpressions, keyExpressionMembership
// is just a convenience data structure so that we don't have to do
// the isKey check in the second iteration below
final Set<SelectExpression> keyExpressionMembership = new HashSet<>();
for (final SelectExpression select : projection) {
final Expression expression = select.getExpression();
if (expression instanceof ColumnReferenceExp) {
final ColumnName name = ((ColumnReferenceExp) expression).getColumnName();
parentSchema.findColumn(name).filter(c -> c.namespace() == Namespace.KEY).ifPresent(c -> {
keyExpressions.get(c.index()).add(select);
keyExpressionMembership.add(select);
});
}
}
// second pass, which iterates the projections but ignores any key expressions,
// instead taking them from the ordered keyExpressions list
final Builder builder = LogicalSchema.builder();
int currKeyIdx = 0;
for (final SelectExpression select : projection) {
if (keyExpressionMembership.contains(select)) {
while (keyExpressions.get(currKeyIdx).isEmpty()) {
currKeyIdx++;
}
final SelectExpression keyExp = keyExpressions.get(currKeyIdx).remove(0);
final SqlType type = expressionTypeManager.getExpressionSqlType(keyExp.getExpression());
builder.keyColumn(keyExp.getAlias(), type);
} else {
final Expression expression = select.getExpression();
final SqlType type = expressionTypeManager.getExpressionSqlType(expression);
if (type == null) {
throw new IllegalArgumentException("Can't infer a type of null. Please explicitly cast " + "it to a required type, e.g. CAST(null AS VARCHAR).");
}
builder.valueColumn(select.getAlias(), type);
}
}
return builder.build();
}
use of io.confluent.ksql.schema.ksql.types.SqlType in project ksql by confluentinc.
the class UdafUtil method resolveAggregateFunction.
public static KsqlAggregateFunction<?, ?, ?> resolveAggregateFunction(final FunctionRegistry functionRegistry, final FunctionCall functionCall, final LogicalSchema schema, final KsqlConfig config) {
try {
final ExpressionTypeManager expressionTypeManager = new ExpressionTypeManager(schema, functionRegistry);
final SqlType argumentType = expressionTypeManager.getExpressionSqlType(functionCall.getArguments().get(0));
// UDAFs only support one non-constant argument, and that argument must be a column reference
final Expression arg = functionCall.getArguments().get(0);
final Optional<Column> possibleValueColumn = arg instanceof UnqualifiedColumnReferenceExp ? schema.findValueColumn(((UnqualifiedColumnReferenceExp) arg).getColumnName()) : // assume that it is a column reference with no alias
schema.findValueColumn(ColumnName.of(arg.toString()));
final Column valueColumn = possibleValueColumn.orElseThrow(() -> new KsqlException("Could not find column for expression: " + arg));
final AggregateFunctionInitArguments aggregateFunctionInitArguments = createAggregateFunctionInitArgs(valueColumn.index(), functionCall, config);
return functionRegistry.getAggregateFunction(functionCall.getName(), argumentType, aggregateFunctionInitArguments);
} catch (final Exception e) {
throw new KsqlException("Failed to create aggregate function: " + functionCall, e);
}
}
use of io.confluent.ksql.schema.ksql.types.SqlType in project ksql by confluentinc.
the class ArithmeticInterpreter method getNonDecimalArithmeticFunction.
private static ArithmeticBinaryFunction getNonDecimalArithmeticFunction(final Operator operator, final SqlType leftType, final SqlType rightType) {
final SqlBaseType leftBaseType = leftType.baseType();
final SqlBaseType rightBaseType = rightType.baseType();
if (leftBaseType == SqlBaseType.STRING && rightBaseType == SqlBaseType.STRING) {
return (o1, o2) -> (String) o1 + (String) o2;
} else if (leftBaseType == SqlBaseType.DOUBLE || rightBaseType == SqlBaseType.DOUBLE) {
final TypedArithmeticBinaryFunction<Double> fn = getDoubleFunction(operator);
final ComparableCastFunction<Double> castLeft = castToDoubleFunction(leftType);
final ComparableCastFunction<Double> castRight = castToDoubleFunction(rightType);
return (o1, o2) -> fn.doFunction(castLeft.cast(o1), castRight.cast(o2));
} else if (leftBaseType == SqlBaseType.BIGINT || rightBaseType == SqlBaseType.BIGINT) {
final TypedArithmeticBinaryFunction<Long> fn = getLongFunction(operator);
final ComparableCastFunction<Long> castLeft = castToLongFunction(leftType);
final ComparableCastFunction<Long> castRight = castToLongFunction(rightType);
return (o1, o2) -> fn.doFunction(castLeft.cast(o1), castRight.cast(o2));
} else if (leftBaseType == SqlBaseType.INTEGER || rightBaseType == SqlBaseType.INTEGER) {
final TypedArithmeticBinaryFunction<Integer> fn = getIntegerFunction(operator);
final ComparableCastFunction<Integer> castLeft = castToIntegerFunction(leftType);
final ComparableCastFunction<Integer> castRight = castToIntegerFunction(rightType);
return (o1, o2) -> fn.doFunction(castLeft.cast(o1), castRight.cast(o2));
} else {
throw new KsqlException("Can't do arithmetic for types " + leftType + " and " + rightType);
}
}
Aggregations