use of java.io.PrintWriter in project CoreNLP by stanfordnlp.
the class QNMinimizer method minimize.
public double[] minimize(DiffFunction dFunction, double functionTolerance, double[] initial, int maxFunctionEvaluations, QNInfo qn) {
if (mem > 0) {
sayln("QNMinimizer called on double function of " + dFunction.domainDimension() + " variables, using M = " + mem + '.');
} else {
sayln("QNMinimizer called on double function of " + dFunction.domainDimension() + " variables, using dynamic setting of M.");
}
if (qn == null && presetInfo == null) {
qn = new QNInfo(mem);
noHistory = true;
} else if (presetInfo != null) {
qn = presetInfo;
noHistory = false;
} else if (qn != null) {
noHistory = false;
}
its = 0;
fevals = 0;
success = false;
qn.scaleOpt = scaleOpt;
// initialize weights
double[] x = initial;
// initialize gradient
double[] rawGrad = new double[x.length];
double[] newGrad = new double[x.length];
double[] newX = new double[x.length];
double[] dir = new double[x.length];
// initialize function value and gradient (gradient is stored in grad inside
// evaluateFunction)
double value = evaluateFunction(dFunction, x, rawGrad);
double[] grad;
if (useOWLQN) {
double norm = l1NormOWL(x, dFunction);
value += norm * lambdaOWL;
// step (1) in Galen & Gao except we are not computing v yet
grad = pseudoGradientOWL(x, rawGrad, dFunction);
} else {
grad = rawGrad;
}
PrintWriter outFile = null;
PrintWriter infoFile = null;
if (outputToFile) {
try {
String baseName = "QN_m" + mem + '_' + lsOpt.toString() + '_' + scaleOpt.toString();
outFile = new PrintWriter(new FileOutputStream(baseName + ".output"), true);
infoFile = new PrintWriter(new FileOutputStream(baseName + ".info"), true);
infoFile.println(dFunction.domainDimension() + "; DomainDimension ");
infoFile.println(mem + "; memory");
} catch (IOException e) {
throw new RuntimeIOException("Caught IOException outputting QN data to file", e);
}
}
Record rec = new Record(monitor, functionTolerance, outFile);
// sets the original gradient and x. Also stores the monitor.
rec.start(value, rawGrad, x);
// Check if max Evaluations and Iterations have been provided.
maxFevals = (maxFunctionEvaluations > 0) ? maxFunctionEvaluations : Integer.MAX_VALUE;
// maxIterations = (maxIterations > 0) ? maxIterations : Integer.MAX_VALUE;
sayln(" An explanation of the output:");
sayln("Iter The number of iterations");
sayln("evals The number of function evaluations");
sayln("SCALING <D> Diagonal scaling was used; <I> Scaled Identity");
sayln("LINESEARCH [## M steplength] Minpack linesearch");
sayln(" 1-Function value was too high");
sayln(" 2-Value ok, gradient positive, positive curvature");
sayln(" 3-Value ok, gradient negative, positive curvature");
sayln(" 4-Value ok, gradient negative, negative curvature");
sayln(" [.. B] Backtracking");
sayln("VALUE The current function value");
sayln("TIME Total elapsed time");
sayln("|GNORM| The current norm of the gradient");
sayln("{RELNORM} The ratio of the current to initial gradient norms");
sayln("AVEIMPROVE The average improvement / current value");
sayln("EVALSCORE The last available eval score");
sayln();
sayln("Iter ## evals ## <SCALING> [LINESEARCH] VALUE TIME |GNORM| {RELNORM} AVEIMPROVE EVALSCORE");
StringBuilder sb = new StringBuilder();
eState state = eState.CONTINUE;
// Beginning of the loop.
do {
try {
if (!quiet) {
sayln(sb.toString());
}
sb = new StringBuilder();
boolean doEval = (its >= 0 && its >= startEvaluateIters && evaluateIters > 0 && its % evaluateIters == 0);
its += 1;
double newValue;
sb.append("Iter ").append(its).append(" evals ").append(fevals).append(' ');
// Compute the search direction
sb.append('<');
computeDir(dir, grad, x, qn, dFunction, sb);
sb.append("> ");
// sanity check dir
boolean hasNaNDir = false;
boolean hasNaNGrad = false;
for (int i = 0; i < dir.length; i++) {
if (dir[i] != dir[i])
hasNaNDir = true;
if (grad[i] != grad[i])
hasNaNGrad = true;
}
if (hasNaNDir && !hasNaNGrad) {
sayln("(NaN dir likely due to Hessian approx - resetting) ");
qn.clear();
// re-compute the search direction
sb.append('<');
computeDir(dir, grad, x, qn, dFunction, sb);
sb.append("> ");
}
// perform line search
sb.append('[');
// initialized in if/else/switch below
double[] newPoint;
if (useOWLQN) {
// only linear search is allowed for OWL-QN
newPoint = lineSearchBacktrackOWL(dFunction, dir, x, newX, grad, value, sb);
sb.append('B');
} else {
// switch between line search options.
switch(lsOpt) {
case BACKTRACK:
newPoint = lineSearchBacktrack(dFunction, dir, x, newX, grad, value, sb);
sb.append('B');
break;
case MINPACK:
newPoint = lineSearchMinPack(dFunction, dir, x, newX, grad, value, functionTolerance, sb);
sb.append('M');
break;
default:
throw new IllegalArgumentException("Invalid line search option for QNMinimizer.");
}
}
newValue = newPoint[f];
sb.append(' ');
sb.append(nf.format(newPoint[a]));
sb.append("] ");
// This shouldn't actually evaluate anything since that should have been
// done in the lineSearch.
System.arraycopy(dFunction.derivativeAt(newX), 0, newGrad, 0, newGrad.length);
// This is where all the s, y updates are applied.
// step (4) in Galen & Gao 2007
qn.update(newX, x, newGrad, rawGrad, newPoint[a]);
if (useOWLQN) {
System.arraycopy(newGrad, 0, rawGrad, 0, newGrad.length);
// pseudo gradient
newGrad = pseudoGradientOWL(newX, newGrad, dFunction);
}
double evalScore = Double.NEGATIVE_INFINITY;
if (doEval) {
evalScore = doEvaluation(newX);
}
// Add the current value and gradient to the records, this also monitors
// X and writes to output
rec.add(newValue, newGrad, newX, fevals, evalScore, sb);
// If you want to call a function and do whatever with the information ...
if (iterCallbackFunction != null) {
iterCallbackFunction.callback(newX, its, newValue, newGrad);
}
// shift
value = newValue;
// double[] temp = x;
// x = newX;
// newX = temp;
System.arraycopy(newX, 0, x, 0, x.length);
System.arraycopy(newGrad, 0, grad, 0, newGrad.length);
if (fevals > maxFevals) {
throw new MaxEvaluationsExceeded("Exceeded in minimize() loop.");
}
} catch (SurpriseConvergence s) {
sayln("QNMinimizer aborted due to surprise convergence");
break;
} catch (MaxEvaluationsExceeded m) {
sayln("QNMinimizer aborted due to maximum number of function evaluations");
sayln(m.toString());
sayln("** This is not an acceptable termination of QNMinimizer, consider");
sayln("** increasing the max number of evaluations, or safeguarding your");
sayln("** program by checking the QNMinimizer.wasSuccessful() method.");
break;
} catch (OutOfMemoryError oome) {
if (!qn.s.isEmpty()) {
qn.s.remove(0);
qn.y.remove(0);
qn.rho.remove(0);
sb.append("{Caught OutOfMemory, changing m from ").append(qn.mem).append(" to ").append(qn.s.size()).append("}]");
qn.mem = qn.s.size();
} else {
throw oome;
}
}
} while (// end do while
(state = rec.toContinue(sb)) == eState.CONTINUE);
if (evaluateIters > 0) {
// do final evaluation
double evalScore = (useEvalImprovement ? doEvaluation(rec.getBest()) : doEvaluation(x));
sayln("final evalScore is: " + evalScore);
}
//
switch(state) {
case TERMINATE_GRADNORM:
sayln("QNMinimizer terminated due to numerically zero gradient: |g| < EPS max(1,|x|) ");
success = true;
break;
case TERMINATE_RELATIVENORM:
sayln("QNMinimizer terminated due to sufficient decrease in gradient norms: |g|/|g0| < TOL ");
success = true;
break;
case TERMINATE_AVERAGEIMPROVE:
sayln("QNMinimizer terminated due to average improvement: | newest_val - previous_val | / |newestVal| < TOL ");
success = true;
break;
case TERMINATE_MAXITR:
sayln("QNMinimizer terminated due to reached max iteration " + maxItr);
success = true;
break;
case TERMINATE_EVALIMPROVE:
sayln("QNMinimizer terminated due to no improvement on eval ");
success = true;
x = rec.getBest();
break;
default:
log.warn("QNMinimizer terminated without converging");
success = false;
break;
}
double completionTime = rec.howLong();
sayln("Total time spent in optimization: " + nfsec.format(completionTime) + 's');
if (outputToFile) {
infoFile.println(completionTime + "; Total Time ");
infoFile.println(fevals + "; Total evaluations");
infoFile.close();
outFile.close();
}
qn.free();
return x;
}
use of java.io.PrintWriter in project CoreNLP by stanfordnlp.
the class FactoredParser method main.
/* some documentation for Roger's convenience
* {pcfg,dep,combo}{PE,DE,TE} are precision/dep/tagging evals for the models
* parser is the PCFG parser
* dparser is the dependency parser
* bparser is the combining parser
* during testing:
* tree is the test tree (gold tree)
* binaryTree is the gold tree binarized
* tree2b is the best PCFG paser, binarized
* tree2 is the best PCFG parse (debinarized)
* tree3 is the dependency parse, binarized
* tree3db is the dependency parser, debinarized
* tree4 is the best combo parse, binarized and then debinarized
* tree4b is the best combo parse, binarized
*/
public static void main(String[] args) {
Options op = new Options(new EnglishTreebankParserParams());
// op.tlpParams may be changed to something else later, so don't use it till
// after options are parsed.
StringUtils.logInvocationString(log, args);
String path = "/u/nlp/stuff/corpora/Treebank3/parsed/mrg/wsj";
int trainLow = 200, trainHigh = 2199, testLow = 2200, testHigh = 2219;
String serializeFile = null;
int i = 0;
while (i < args.length && args[i].startsWith("-")) {
if (args[i].equalsIgnoreCase("-path") && (i + 1 < args.length)) {
path = args[i + 1];
i += 2;
} else if (args[i].equalsIgnoreCase("-train") && (i + 2 < args.length)) {
trainLow = Integer.parseInt(args[i + 1]);
trainHigh = Integer.parseInt(args[i + 2]);
i += 3;
} else if (args[i].equalsIgnoreCase("-test") && (i + 2 < args.length)) {
testLow = Integer.parseInt(args[i + 1]);
testHigh = Integer.parseInt(args[i + 2]);
i += 3;
} else if (args[i].equalsIgnoreCase("-serialize") && (i + 1 < args.length)) {
serializeFile = args[i + 1];
i += 2;
} else if (args[i].equalsIgnoreCase("-tLPP") && (i + 1 < args.length)) {
try {
op.tlpParams = (TreebankLangParserParams) Class.forName(args[i + 1]).newInstance();
} catch (ClassNotFoundException e) {
log.info("Class not found: " + args[i + 1]);
throw new RuntimeException(e);
} catch (InstantiationException e) {
log.info("Couldn't instantiate: " + args[i + 1] + ": " + e.toString());
throw new RuntimeException(e);
} catch (IllegalAccessException e) {
log.info("illegal access" + e);
throw new RuntimeException(e);
}
i += 2;
} else if (args[i].equals("-encoding")) {
// sets encoding for TreebankLangParserParams
op.tlpParams.setInputEncoding(args[i + 1]);
op.tlpParams.setOutputEncoding(args[i + 1]);
i += 2;
} else {
i = op.setOptionOrWarn(args, i);
}
}
// System.out.println(tlpParams.getClass());
TreebankLanguagePack tlp = op.tlpParams.treebankLanguagePack();
op.trainOptions.sisterSplitters = Generics.newHashSet(Arrays.asList(op.tlpParams.sisterSplitters()));
// BinarizerFactory.TreeAnnotator.setTreebankLang(tlpParams);
PrintWriter pw = op.tlpParams.pw();
op.testOptions.display();
op.trainOptions.display();
op.display();
op.tlpParams.display();
// setup tree transforms
Treebank trainTreebank = op.tlpParams.memoryTreebank();
MemoryTreebank testTreebank = op.tlpParams.testMemoryTreebank();
// Treebank blippTreebank = ((EnglishTreebankParserParams) tlpParams).diskTreebank();
// String blippPath = "/afs/ir.stanford.edu/data/linguistic-data/BLLIP-WSJ/";
// blippTreebank.loadPath(blippPath, "", true);
Timing.startTime();
log.info("Reading trees...");
testTreebank.loadPath(path, new NumberRangeFileFilter(testLow, testHigh, true));
if (op.testOptions.increasingLength) {
Collections.sort(testTreebank, new TreeLengthComparator());
}
trainTreebank.loadPath(path, new NumberRangeFileFilter(trainLow, trainHigh, true));
Timing.tick("done.");
log.info("Binarizing trees...");
TreeAnnotatorAndBinarizer binarizer;
if (!op.trainOptions.leftToRight) {
binarizer = new TreeAnnotatorAndBinarizer(op.tlpParams, op.forceCNF, !op.trainOptions.outsideFactor(), true, op);
} else {
binarizer = new TreeAnnotatorAndBinarizer(op.tlpParams.headFinder(), new LeftHeadFinder(), op.tlpParams, op.forceCNF, !op.trainOptions.outsideFactor(), true, op);
}
CollinsPuncTransformer collinsPuncTransformer = null;
if (op.trainOptions.collinsPunc) {
collinsPuncTransformer = new CollinsPuncTransformer(tlp);
}
TreeTransformer debinarizer = new Debinarizer(op.forceCNF);
List<Tree> binaryTrainTrees = new ArrayList<>();
if (op.trainOptions.selectiveSplit) {
op.trainOptions.splitters = ParentAnnotationStats.getSplitCategories(trainTreebank, op.trainOptions.tagSelectiveSplit, 0, op.trainOptions.selectiveSplitCutOff, op.trainOptions.tagSelectiveSplitCutOff, op.tlpParams.treebankLanguagePack());
if (op.trainOptions.deleteSplitters != null) {
List<String> deleted = new ArrayList<>();
for (String del : op.trainOptions.deleteSplitters) {
String baseDel = tlp.basicCategory(del);
boolean checkBasic = del.equals(baseDel);
for (Iterator<String> it = op.trainOptions.splitters.iterator(); it.hasNext(); ) {
String elem = it.next();
String baseElem = tlp.basicCategory(elem);
boolean delStr = checkBasic && baseElem.equals(baseDel) || elem.equals(del);
if (delStr) {
it.remove();
deleted.add(elem);
}
}
}
log.info("Removed from vertical splitters: " + deleted);
}
}
if (op.trainOptions.selectivePostSplit) {
TreeTransformer myTransformer = new TreeAnnotator(op.tlpParams.headFinder(), op.tlpParams, op);
Treebank annotatedTB = trainTreebank.transform(myTransformer);
op.trainOptions.postSplitters = ParentAnnotationStats.getSplitCategories(annotatedTB, true, 0, op.trainOptions.selectivePostSplitCutOff, op.trainOptions.tagSelectivePostSplitCutOff, op.tlpParams.treebankLanguagePack());
}
if (op.trainOptions.hSelSplit) {
binarizer.setDoSelectiveSplit(false);
for (Tree tree : trainTreebank) {
if (op.trainOptions.collinsPunc) {
tree = collinsPuncTransformer.transformTree(tree);
}
//tree.pennPrint(tlpParams.pw());
tree = binarizer.transformTree(tree);
//binaryTrainTrees.add(tree);
}
binarizer.setDoSelectiveSplit(true);
}
for (Tree tree : trainTreebank) {
if (op.trainOptions.collinsPunc) {
tree = collinsPuncTransformer.transformTree(tree);
}
tree = binarizer.transformTree(tree);
binaryTrainTrees.add(tree);
}
if (op.testOptions.verbose) {
binarizer.dumpStats();
}
List<Tree> binaryTestTrees = new ArrayList<>();
for (Tree tree : testTreebank) {
if (op.trainOptions.collinsPunc) {
tree = collinsPuncTransformer.transformTree(tree);
}
tree = binarizer.transformTree(tree);
binaryTestTrees.add(tree);
}
// binarization
Timing.tick("done.");
BinaryGrammar bg = null;
UnaryGrammar ug = null;
DependencyGrammar dg = null;
// DependencyGrammar dgBLIPP = null;
Lexicon lex = null;
Index<String> stateIndex = new HashIndex<>();
// extract grammars
Extractor<Pair<UnaryGrammar, BinaryGrammar>> bgExtractor = new BinaryGrammarExtractor(op, stateIndex);
if (op.doPCFG) {
log.info("Extracting PCFG...");
Pair<UnaryGrammar, BinaryGrammar> bgug = null;
if (op.trainOptions.cheatPCFG) {
List<Tree> allTrees = new ArrayList<>(binaryTrainTrees);
allTrees.addAll(binaryTestTrees);
bgug = bgExtractor.extract(allTrees);
} else {
bgug = bgExtractor.extract(binaryTrainTrees);
}
bg = bgug.second;
bg.splitRules();
ug = bgug.first;
ug.purgeRules();
Timing.tick("done.");
}
log.info("Extracting Lexicon...");
Index<String> wordIndex = new HashIndex<>();
Index<String> tagIndex = new HashIndex<>();
lex = op.tlpParams.lex(op, wordIndex, tagIndex);
lex.initializeTraining(binaryTrainTrees.size());
lex.train(binaryTrainTrees);
lex.finishTraining();
Timing.tick("done.");
if (op.doDep) {
log.info("Extracting Dependencies...");
binaryTrainTrees.clear();
Extractor<DependencyGrammar> dgExtractor = new MLEDependencyGrammarExtractor(op, wordIndex, tagIndex);
// dgBLIPP = (DependencyGrammar) dgExtractor.extract(new ConcatenationIterator(trainTreebank.iterator(),blippTreebank.iterator()),new TransformTreeDependency(tlpParams,true));
// DependencyGrammar dg1 = dgExtractor.extract(trainTreebank.iterator(), new TransformTreeDependency(op.tlpParams, true));
//dgBLIPP=(DependencyGrammar)dgExtractor.extract(blippTreebank.iterator(),new TransformTreeDependency(tlpParams));
//dg = (DependencyGrammar) dgExtractor.extract(new ConcatenationIterator(trainTreebank.iterator(),blippTreebank.iterator()),new TransformTreeDependency(tlpParams));
// dg=new DependencyGrammarCombination(dg1,dgBLIPP,2);
//uses information whether the words are known or not, discards unknown words
dg = dgExtractor.extract(binaryTrainTrees);
Timing.tick("done.");
//System.out.print("Extracting Unknown Word Model...");
//UnknownWordModel uwm = (UnknownWordModel)uwmExtractor.extract(binaryTrainTrees);
//Timing.tick("done.");
System.out.print("Tuning Dependency Model...");
dg.tune(binaryTestTrees);
//System.out.println("TUNE DEPS: "+tuneDeps);
Timing.tick("done.");
}
BinaryGrammar boundBG = bg;
UnaryGrammar boundUG = ug;
GrammarProjection gp = new NullGrammarProjection(bg, ug);
// serialization
if (serializeFile != null) {
log.info("Serializing parser...");
LexicalizedParser parser = new LexicalizedParser(lex, bg, ug, dg, stateIndex, wordIndex, tagIndex, op);
parser.saveParserToSerialized(serializeFile);
Timing.tick("done.");
}
// test: pcfg-parse and output
ExhaustivePCFGParser parser = null;
if (op.doPCFG) {
parser = new ExhaustivePCFGParser(boundBG, boundUG, lex, op, stateIndex, wordIndex, tagIndex);
}
ExhaustiveDependencyParser dparser = ((op.doDep && !op.testOptions.useFastFactored) ? new ExhaustiveDependencyParser(dg, lex, op, wordIndex, tagIndex) : null);
Scorer scorer = (op.doPCFG ? new TwinScorer(new ProjectionScorer(parser, gp, op), dparser) : null);
//Scorer scorer = parser;
BiLexPCFGParser bparser = null;
if (op.doPCFG && op.doDep) {
bparser = (op.testOptions.useN5) ? new BiLexPCFGParser.N5BiLexPCFGParser(scorer, parser, dparser, bg, ug, dg, lex, op, gp, stateIndex, wordIndex, tagIndex) : new BiLexPCFGParser(scorer, parser, dparser, bg, ug, dg, lex, op, gp, stateIndex, wordIndex, tagIndex);
}
Evalb pcfgPE = new Evalb("pcfg PE", true);
Evalb comboPE = new Evalb("combo PE", true);
AbstractEval pcfgCB = new Evalb.CBEval("pcfg CB", true);
AbstractEval pcfgTE = new TaggingEval("pcfg TE");
AbstractEval comboTE = new TaggingEval("combo TE");
AbstractEval pcfgTEnoPunct = new TaggingEval("pcfg nopunct TE");
AbstractEval comboTEnoPunct = new TaggingEval("combo nopunct TE");
AbstractEval depTE = new TaggingEval("depnd TE");
AbstractEval depDE = new UnlabeledAttachmentEval("depnd DE", true, null, tlp.punctuationWordRejectFilter());
AbstractEval comboDE = new UnlabeledAttachmentEval("combo DE", true, null, tlp.punctuationWordRejectFilter());
if (op.testOptions.evalb) {
EvalbFormatWriter.initEVALBfiles(op.tlpParams);
}
// int[] countByLength = new int[op.testOptions.maxLength+1];
// Use a reflection ruse, so one can run this without needing the
// tagger. Using a function rather than a MaxentTagger means we
// can distribute a version of the parser that doesn't include the
// entire tagger.
Function<List<? extends HasWord>, ArrayList<TaggedWord>> tagger = null;
if (op.testOptions.preTag) {
try {
Class[] argsClass = { String.class };
Object[] arguments = new Object[] { op.testOptions.taggerSerializedFile };
tagger = (Function<List<? extends HasWord>, ArrayList<TaggedWord>>) Class.forName("edu.stanford.nlp.tagger.maxent.MaxentTagger").getConstructor(argsClass).newInstance(arguments);
} catch (Exception e) {
log.info(e);
log.info("Warning: No pretagging of sentences will be done.");
}
}
for (int tNum = 0, ttSize = testTreebank.size(); tNum < ttSize; tNum++) {
Tree tree = testTreebank.get(tNum);
int testTreeLen = tree.yield().size();
if (testTreeLen > op.testOptions.maxLength) {
continue;
}
Tree binaryTree = binaryTestTrees.get(tNum);
// countByLength[testTreeLen]++;
System.out.println("-------------------------------------");
System.out.println("Number: " + (tNum + 1));
System.out.println("Length: " + testTreeLen);
//tree.pennPrint(pw);
// System.out.println("XXXX The binary tree is");
// binaryTree.pennPrint(pw);
//System.out.println("Here are the tags in the lexicon:");
//System.out.println(lex.showTags());
//System.out.println("Here's the tagnumberer:");
//System.out.println(Numberer.getGlobalNumberer("tags").toString());
long timeMil1 = System.currentTimeMillis();
Timing.tick("Starting parse.");
if (op.doPCFG) {
//log.info(op.testOptions.forceTags);
if (op.testOptions.forceTags) {
if (tagger != null) {
//System.out.println("Using a tagger to set tags");
//System.out.println("Tagged sentence as: " + tagger.processSentence(cutLast(wordify(binaryTree.yield()))).toString(false));
parser.parse(addLast(tagger.apply(cutLast(wordify(binaryTree.yield())))));
} else {
//System.out.println("Forcing tags to match input.");
parser.parse(cleanTags(binaryTree.taggedYield(), tlp));
}
} else {
// System.out.println("XXXX Parsing " + binaryTree.yield());
parser.parse(binaryTree.yieldHasWord());
}
//Timing.tick("Done with pcfg phase.");
}
if (op.doDep) {
dparser.parse(binaryTree.yieldHasWord());
//Timing.tick("Done with dependency phase.");
}
boolean bothPassed = false;
if (op.doPCFG && op.doDep) {
bothPassed = bparser.parse(binaryTree.yieldHasWord());
//Timing.tick("Done with combination phase.");
}
long timeMil2 = System.currentTimeMillis();
long elapsed = timeMil2 - timeMil1;
log.info("Time: " + ((int) (elapsed / 100)) / 10.00 + " sec.");
//System.out.println("PCFG Best Parse:");
Tree tree2b = null;
Tree tree2 = null;
//System.out.println("Got full best parse...");
if (op.doPCFG) {
tree2b = parser.getBestParse();
tree2 = debinarizer.transformTree(tree2b);
}
//System.out.println("Debinarized parse...");
//tree2.pennPrint();
//System.out.println("DepG Best Parse:");
Tree tree3 = null;
Tree tree3db = null;
if (op.doDep) {
tree3 = dparser.getBestParse();
// was: but wrong Tree tree3db = debinarizer.transformTree(tree2);
tree3db = debinarizer.transformTree(tree3);
tree3.pennPrint(pw);
}
//tree.pennPrint();
//((Tree)binaryTrainTrees.get(tNum)).pennPrint();
//System.out.println("Combo Best Parse:");
Tree tree4 = null;
if (op.doPCFG && op.doDep) {
try {
tree4 = bparser.getBestParse();
if (tree4 == null) {
tree4 = tree2b;
}
} catch (NullPointerException e) {
log.info("Blocked, using PCFG parse!");
tree4 = tree2b;
}
}
if (op.doPCFG && !bothPassed) {
tree4 = tree2b;
}
//tree4.pennPrint();
if (op.doDep) {
depDE.evaluate(tree3, binaryTree, pw);
depTE.evaluate(tree3db, tree, pw);
}
TreeTransformer tc = op.tlpParams.collinizer();
TreeTransformer tcEvalb = op.tlpParams.collinizerEvalb();
if (op.doPCFG) {
// System.out.println("XXXX Best PCFG was: ");
// tree2.pennPrint();
// System.out.println("XXXX Transformed best PCFG is: ");
// tc.transformTree(tree2).pennPrint();
//System.out.println("True Best Parse:");
//tree.pennPrint();
//tc.transformTree(tree).pennPrint();
pcfgPE.evaluate(tc.transformTree(tree2), tc.transformTree(tree), pw);
pcfgCB.evaluate(tc.transformTree(tree2), tc.transformTree(tree), pw);
Tree tree4b = null;
if (op.doDep) {
comboDE.evaluate((bothPassed ? tree4 : tree3), binaryTree, pw);
tree4b = tree4;
tree4 = debinarizer.transformTree(tree4);
if (op.nodePrune) {
NodePruner np = new NodePruner(parser, debinarizer);
tree4 = np.prune(tree4);
}
//tree4.pennPrint();
comboPE.evaluate(tc.transformTree(tree4), tc.transformTree(tree), pw);
}
//pcfgTE.evaluate(tree2, tree);
pcfgTE.evaluate(tcEvalb.transformTree(tree2), tcEvalb.transformTree(tree), pw);
pcfgTEnoPunct.evaluate(tc.transformTree(tree2), tc.transformTree(tree), pw);
if (op.doDep) {
comboTE.evaluate(tcEvalb.transformTree(tree4), tcEvalb.transformTree(tree), pw);
comboTEnoPunct.evaluate(tc.transformTree(tree4), tc.transformTree(tree), pw);
}
System.out.println("PCFG only: " + parser.scoreBinarizedTree(tree2b, 0));
//tc.transformTree(tree2).pennPrint();
tree2.pennPrint(pw);
if (op.doDep) {
System.out.println("Combo: " + parser.scoreBinarizedTree(tree4b, 0));
// tc.transformTree(tree4).pennPrint(pw);
tree4.pennPrint(pw);
}
System.out.println("Correct:" + parser.scoreBinarizedTree(binaryTree, 0));
/*
if (parser.scoreBinarizedTree(tree2b,true) < parser.scoreBinarizedTree(binaryTree,true)) {
System.out.println("SCORE INVERSION");
parser.validateBinarizedTree(binaryTree,0);
}
*/
tree.pennPrint(pw);
}
if (op.testOptions.evalb) {
if (op.doPCFG && op.doDep) {
EvalbFormatWriter.writeEVALBline(tcEvalb.transformTree(tree), tcEvalb.transformTree(tree4));
} else if (op.doPCFG) {
EvalbFormatWriter.writeEVALBline(tcEvalb.transformTree(tree), tcEvalb.transformTree(tree2));
} else if (op.doDep) {
EvalbFormatWriter.writeEVALBline(tcEvalb.transformTree(tree), tcEvalb.transformTree(tree3db));
}
}
}
if (op.testOptions.evalb) {
EvalbFormatWriter.closeEVALBfiles();
}
// op.testOptions.display();
if (op.doPCFG) {
pcfgPE.display(false, pw);
System.out.println("Grammar size: " + stateIndex.size());
pcfgCB.display(false, pw);
if (op.doDep) {
comboPE.display(false, pw);
}
pcfgTE.display(false, pw);
pcfgTEnoPunct.display(false, pw);
if (op.doDep) {
comboTE.display(false, pw);
comboTEnoPunct.display(false, pw);
}
}
if (op.doDep) {
depTE.display(false, pw);
depDE.display(false, pw);
}
if (op.doPCFG && op.doDep) {
comboDE.display(false, pw);
}
// pcfgPE.printGoodBad();
}
use of java.io.PrintWriter in project CoreNLP by stanfordnlp.
the class ChineseCharacterBasedLexiconTraining method main.
public static void main(String[] args) throws IOException {
Map<String, Integer> flagsToNumArgs = Generics.newHashMap();
flagsToNumArgs.put("-parser", Integer.valueOf(3));
flagsToNumArgs.put("-lex", Integer.valueOf(3));
flagsToNumArgs.put("-test", Integer.valueOf(2));
flagsToNumArgs.put("-out", Integer.valueOf(1));
flagsToNumArgs.put("-lengthPenalty", Integer.valueOf(1));
flagsToNumArgs.put("-penaltyType", Integer.valueOf(1));
flagsToNumArgs.put("-maxLength", Integer.valueOf(1));
flagsToNumArgs.put("-stats", Integer.valueOf(2));
Map<String, String[]> argMap = StringUtils.argsToMap(args, flagsToNumArgs);
boolean eval = argMap.containsKey("-eval");
PrintWriter pw = null;
if (argMap.containsKey("-out")) {
pw = new PrintWriter(new OutputStreamWriter(new FileOutputStream((argMap.get("-out"))[0]), "GB18030"), true);
}
log.info("ChineseCharacterBasedLexicon called with args:");
ChineseTreebankParserParams ctpp = new ChineseTreebankParserParams();
for (int i = 0; i < args.length; i++) {
ctpp.setOptionFlag(args, i);
log.info(" " + args[i]);
}
log.info();
Options op = new Options(ctpp);
if (argMap.containsKey("-stats")) {
String[] statArgs = (argMap.get("-stats"));
MemoryTreebank rawTrainTreebank = op.tlpParams.memoryTreebank();
FileFilter trainFilt = new NumberRangesFileFilter(statArgs[1], false);
rawTrainTreebank.loadPath(new File(statArgs[0]), trainFilt);
log.info("Done reading trees.");
MemoryTreebank trainTreebank;
if (argMap.containsKey("-annotate")) {
trainTreebank = new MemoryTreebank();
TreeAnnotator annotator = new TreeAnnotator(ctpp.headFinder(), ctpp, op);
for (Tree tree : rawTrainTreebank) {
trainTreebank.add(annotator.transformTree(tree));
}
log.info("Done annotating trees.");
} else {
trainTreebank = rawTrainTreebank;
}
printStats(trainTreebank, pw);
System.exit(0);
}
int maxLength = 1000000;
// Test.verbose = true;
if (argMap.containsKey("-norm")) {
op.testOptions.lengthNormalization = true;
}
if (argMap.containsKey("-maxLength")) {
maxLength = Integer.parseInt((argMap.get("-maxLength"))[0]);
}
op.testOptions.maxLength = 120;
boolean combo = argMap.containsKey("-combo");
if (combo) {
ctpp.useCharacterBasedLexicon = true;
op.testOptions.maxSpanForTags = 10;
op.doDep = false;
op.dcTags = false;
}
LexicalizedParser lp = null;
Lexicon lex = null;
if (argMap.containsKey("-parser")) {
String[] parserArgs = (argMap.get("-parser"));
if (parserArgs.length > 1) {
FileFilter trainFilt = new NumberRangesFileFilter(parserArgs[1], false);
lp = LexicalizedParser.trainFromTreebank(parserArgs[0], trainFilt, op);
if (parserArgs.length == 3) {
String filename = parserArgs[2];
log.info("Writing parser in serialized format to file " + filename + " ");
System.err.flush();
ObjectOutputStream out = IOUtils.writeStreamFromString(filename);
out.writeObject(lp);
out.close();
log.info("done.");
}
} else {
String parserFile = parserArgs[0];
lp = LexicalizedParser.loadModel(parserFile, op);
}
lex = lp.getLexicon();
op = lp.getOp();
ctpp = (ChineseTreebankParserParams) op.tlpParams;
}
if (argMap.containsKey("-rad")) {
ctpp.useUnknownCharacterModel = true;
}
if (argMap.containsKey("-lengthPenalty")) {
ctpp.lengthPenalty = Double.parseDouble((argMap.get("-lengthPenalty"))[0]);
}
if (argMap.containsKey("-penaltyType")) {
ctpp.penaltyType = Integer.parseInt((argMap.get("-penaltyType"))[0]);
}
if (argMap.containsKey("-lex")) {
String[] lexArgs = (argMap.get("-lex"));
if (lexArgs.length > 1) {
Index<String> wordIndex = new HashIndex<>();
Index<String> tagIndex = new HashIndex<>();
lex = ctpp.lex(op, wordIndex, tagIndex);
MemoryTreebank rawTrainTreebank = op.tlpParams.memoryTreebank();
FileFilter trainFilt = new NumberRangesFileFilter(lexArgs[1], false);
rawTrainTreebank.loadPath(new File(lexArgs[0]), trainFilt);
log.info("Done reading trees.");
MemoryTreebank trainTreebank;
if (argMap.containsKey("-annotate")) {
trainTreebank = new MemoryTreebank();
TreeAnnotator annotator = new TreeAnnotator(ctpp.headFinder(), ctpp, op);
for (Tree tree : rawTrainTreebank) {
tree = annotator.transformTree(tree);
trainTreebank.add(tree);
}
log.info("Done annotating trees.");
} else {
trainTreebank = rawTrainTreebank;
}
lex.initializeTraining(trainTreebank.size());
lex.train(trainTreebank);
lex.finishTraining();
log.info("Done training lexicon.");
if (lexArgs.length == 3) {
String filename = lexArgs.length == 3 ? lexArgs[2] : "parsers/chineseCharLex.ser.gz";
log.info("Writing lexicon in serialized format to file " + filename + " ");
System.err.flush();
ObjectOutputStream out = IOUtils.writeStreamFromString(filename);
out.writeObject(lex);
out.close();
log.info("done.");
}
} else {
String lexFile = lexArgs.length == 1 ? lexArgs[0] : "parsers/chineseCharLex.ser.gz";
log.info("Reading Lexicon from file " + lexFile);
ObjectInputStream in = IOUtils.readStreamFromString(lexFile);
try {
lex = (Lexicon) in.readObject();
} catch (ClassNotFoundException e) {
throw new RuntimeException("Bad serialized file: " + lexFile);
}
in.close();
}
}
if (argMap.containsKey("-test")) {
boolean segmentWords = ctpp.segment;
boolean parse = lp != null;
assert (parse || segmentWords);
// WordCatConstituent.collinizeWords = argMap.containsKey("-collinizeWords");
// WordCatConstituent.collinizeTags = argMap.containsKey("-collinizeTags");
WordSegmenter seg = null;
if (segmentWords) {
seg = (WordSegmenter) lex;
}
String[] testArgs = (argMap.get("-test"));
MemoryTreebank testTreebank = op.tlpParams.memoryTreebank();
FileFilter testFilt = new NumberRangesFileFilter(testArgs[1], false);
testTreebank.loadPath(new File(testArgs[0]), testFilt);
TreeTransformer subcategoryStripper = op.tlpParams.subcategoryStripper();
TreeTransformer collinizer = ctpp.collinizer();
WordCatEquivalenceClasser eqclass = new WordCatEquivalenceClasser();
WordCatEqualityChecker eqcheck = new WordCatEqualityChecker();
EquivalenceClassEval basicEval = new EquivalenceClassEval(eqclass, eqcheck, "basic");
EquivalenceClassEval collinsEval = new EquivalenceClassEval(eqclass, eqcheck, "collinized");
List<String> evalTypes = new ArrayList<>(3);
boolean goodPOS = false;
if (segmentWords) {
evalTypes.add(WordCatConstituent.wordType);
if (ctpp.segmentMarkov && !parse) {
evalTypes.add(WordCatConstituent.tagType);
goodPOS = true;
}
}
if (parse) {
evalTypes.add(WordCatConstituent.tagType);
evalTypes.add(WordCatConstituent.catType);
if (combo) {
evalTypes.add(WordCatConstituent.wordType);
goodPOS = true;
}
}
TreeToBracketProcessor proc = new TreeToBracketProcessor(evalTypes);
log.info("Testing...");
for (Tree goldTop : testTreebank) {
Tree gold = goldTop.firstChild();
List<HasWord> goldSentence = gold.yieldHasWord();
if (goldSentence.size() > maxLength) {
log.info("Skipping sentence; too long: " + goldSentence.size());
continue;
} else {
log.info("Processing sentence; length: " + goldSentence.size());
}
List<HasWord> s;
if (segmentWords) {
StringBuilder goldCharBuf = new StringBuilder();
for (HasWord aGoldSentence : goldSentence) {
StringLabel word = (StringLabel) aGoldSentence;
goldCharBuf.append(word.value());
}
String goldChars = goldCharBuf.toString();
s = seg.segment(goldChars);
} else {
s = goldSentence;
}
Tree tree;
if (parse) {
tree = lp.parseTree(s);
if (tree == null) {
throw new RuntimeException("PARSER RETURNED NULL!!!");
}
} else {
tree = Trees.toFlatTree(s);
tree = subcategoryStripper.transformTree(tree);
}
if (pw != null) {
if (parse) {
tree.pennPrint(pw);
} else {
Iterator sentIter = s.iterator();
for (; ; ) {
Word word = (Word) sentIter.next();
pw.print(word.word());
if (sentIter.hasNext()) {
pw.print(" ");
} else {
break;
}
}
}
pw.println();
}
if (eval) {
Collection ourBrackets, goldBrackets;
ourBrackets = proc.allBrackets(tree);
goldBrackets = proc.allBrackets(gold);
if (goodPOS) {
ourBrackets.addAll(proc.commonWordTagTypeBrackets(tree, gold));
goldBrackets.addAll(proc.commonWordTagTypeBrackets(gold, tree));
}
basicEval.eval(ourBrackets, goldBrackets);
System.out.println("\nScores:");
basicEval.displayLast();
Tree collinsTree = collinizer.transformTree(tree);
Tree collinsGold = collinizer.transformTree(gold);
ourBrackets = proc.allBrackets(collinsTree);
goldBrackets = proc.allBrackets(collinsGold);
if (goodPOS) {
ourBrackets.addAll(proc.commonWordTagTypeBrackets(collinsTree, collinsGold));
goldBrackets.addAll(proc.commonWordTagTypeBrackets(collinsGold, collinsTree));
}
collinsEval.eval(ourBrackets, goldBrackets);
System.out.println("\nCollinized scores:");
collinsEval.displayLast();
System.out.println();
}
}
if (eval) {
basicEval.display();
System.out.println();
collinsEval.display();
}
}
}
use of java.io.PrintWriter in project CoreNLP by stanfordnlp.
the class BaseLexicon method printLexStats.
/** Print some statistics about this lexicon. */
public void printLexStats() {
System.out.println("BaseLexicon statistics");
System.out.println("unknownLevel is " + getUnknownWordModel().getUnknownLevel());
// System.out.println("Rules size: " + rules.size());
System.out.println("Sum of rulesWithWord: " + numRules());
System.out.println("Tags size: " + tags.size());
int wsize = words.size();
System.out.println("Words size: " + wsize);
// System.out.println("Unseen Sigs size: " + sigs.size() +
// " [number of unknown equivalence classes]");
System.out.println("rulesWithWord length: " + rulesWithWord.length + " [should be sum of words + unknown sigs]");
int[] lengths = new int[STATS_BINS];
ArrayList<String>[] wArr = new ArrayList[STATS_BINS];
for (int j = 0; j < STATS_BINS; j++) {
wArr[j] = new ArrayList<>();
}
for (int i = 0; i < rulesWithWord.length; i++) {
int num = rulesWithWord[i].size();
if (num > STATS_BINS - 1) {
num = STATS_BINS - 1;
}
lengths[num]++;
if (wsize <= 20 || num >= STATS_BINS / 2) {
wArr[num].add(wordIndex.get(i));
}
}
System.out.println("Stats on how many taggings for how many words");
for (int j = 0; j < STATS_BINS; j++) {
System.out.print(j + " taggings: " + lengths[j] + " words ");
if (wsize <= 20 || j >= STATS_BINS / 2) {
System.out.print(wArr[j]);
}
System.out.println();
}
NumberFormat nf = NumberFormat.getNumberInstance();
nf.setMaximumFractionDigits(0);
System.out.println("Unseen counter: " + Counters.toString(uwModel.unSeenCounter(), nf));
if (wsize < 50 && tags.size() < 10) {
nf.setMaximumFractionDigits(3);
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter(sw);
pw.println("Tagging probabilities log P(word|tag)");
for (int t = 0; t < tags.size(); t++) {
pw.print('\t');
pw.print(tagIndex.get(t));
}
pw.println();
for (int w = 0; w < wsize; w++) {
pw.print(wordIndex.get(w));
pw.print('\t');
for (int t = 0; t < tags.size(); t++) {
IntTaggedWord iTW = new IntTaggedWord(w, t);
pw.print(nf.format(score(iTW, 1, wordIndex.get(w), null)));
if (t == tags.size() - 1) {
pw.println();
} else
pw.print('\t');
}
}
pw.close();
System.out.println(sw.toString());
}
}
use of java.io.PrintWriter in project CoreNLP by stanfordnlp.
the class RuleBranchingFactor method main.
public static void main(String[] args) {
if (args.length < minArgs) {
System.out.println(usage);
System.exit(-1);
}
// Process command-line options
Properties options = StringUtils.argsToProperties(args, optionArgDefinitions);
String fileName = options.getProperty("");
if (fileName == null || fileName.equals("")) {
System.out.println(usage);
System.exit(-1);
}
Language language = PropertiesUtils.get(options, "l", Language.English, Language.class);
TreebankLangParserParams tlpp = language.params;
String encoding = options.getProperty("e", "UTF-8");
tlpp.setInputEncoding(encoding);
tlpp.setOutputEncoding(encoding);
DiskTreebank tb = tlpp.diskTreebank();
tb.loadPath(fileName);
// Statistics
Counter<String> binaryRuleTypes = new ClassicCounter<>(20000);
List<Integer> branchingFactors = new ArrayList<>(20000);
int nTrees = 0;
int nUnaryRules = 0;
int nBinaryRules = 0;
int binaryBranchingFactors = 0;
// Read the treebank
PrintWriter pw = tlpp.pw();
for (Tree tree : tb) {
if (tree.value().equals("ROOT")) {
tree = tree.firstChild();
}
++nTrees;
for (Tree subTree : tree) {
if (subTree.isPhrasal()) {
if (subTree.numChildren() > 1) {
++nBinaryRules;
branchingFactors.add(subTree.numChildren());
binaryBranchingFactors += subTree.numChildren();
binaryRuleTypes.incrementCount(treeToRuleString(subTree));
} else {
++nUnaryRules;
}
}
}
}
double mean = (double) binaryBranchingFactors / (double) nBinaryRules;
System.out.printf("#trees:\t%d%n", nTrees);
System.out.printf("#binary:\t%d%n", nBinaryRules);
System.out.printf("#binary types:\t%d%n", binaryRuleTypes.keySet().size());
System.out.printf("mean branching:\t%.4f%n", mean);
System.out.printf("stddev branching:\t%.4f%n", standardDeviation(branchingFactors, mean));
System.out.printf("rule entropy:\t%.5f%n", Counters.entropy(binaryRuleTypes));
System.out.printf("#unaries:\t%d%n", nUnaryRules);
}
Aggregations