use of java.nio.DoubleBuffer in project ojAlgo by optimatika.
the class BufferArray method create.
private static BasicArray<Double> create(final File file, final long... structure) {
final long tmpCount = StructureAnyD.count(structure);
DoubleBuffer tmpDoubleBuffer = null;
try {
final RandomAccessFile tmpRandomAccessFile = new RandomAccessFile(file, "rw");
final FileChannel tmpFileChannel = tmpRandomAccessFile.getChannel();
final long tmpSize = DOUBLE_ELEMENT_SIZE * tmpCount;
if (tmpCount > (1L << 8)) {
final DenseArray.Factory<Double> tmpFactory = new DenseArray.Factory<Double>() {
long offset = 0L;
@Override
public AggregatorSet<Double> aggregator() {
return PrimitiveAggregator.getSet();
}
@Override
public FunctionSet<Double> function() {
return PrimitiveFunction.getSet();
}
@Override
public Scalar.Factory<Double> scalar() {
return PrimitiveScalar.FACTORY;
}
@Override
long getElementSize() {
return DOUBLE_ELEMENT_SIZE;
}
@Override
PlainArray<Double> make(final long size) {
final long tmpSize2 = size * DOUBLE_ELEMENT_SIZE;
try {
final MappedByteBuffer tmpMap = tmpFileChannel.map(MapMode.READ_WRITE, offset, tmpSize2);
tmpMap.order(ByteOrder.nativeOrder());
return new DoubleBufferArray(tmpMap.asDoubleBuffer(), tmpRandomAccessFile);
} catch (final IOException exception) {
throw new RuntimeException(exception);
} finally {
offset += tmpSize2;
}
}
};
return tmpFactory.makeSegmented(structure);
} else {
final MappedByteBuffer tmpMappedByteBuffer = tmpFileChannel.map(FileChannel.MapMode.READ_WRITE, 0L, tmpSize);
tmpMappedByteBuffer.order(ByteOrder.nativeOrder());
tmpDoubleBuffer = tmpMappedByteBuffer.asDoubleBuffer();
return new DoubleBufferArray(tmpDoubleBuffer, tmpRandomAccessFile);
}
} catch (final FileNotFoundException exception) {
throw new RuntimeException(exception);
} catch (final IOException exception) {
throw new RuntimeException(exception);
}
}
use of java.nio.DoubleBuffer in project GltfSerializers by opensourceBIM.
the class BinaryGltfSerializer method addNode.
private String addNode(String meshName, IfcProduct ifcProduct) {
String nodeName = "node_" + ifcProduct.getOid();
ObjectNode nodeNode = OBJECT_MAPPER.createObjectNode();
ArrayNode matrixArray = OBJECT_MAPPER.createArrayNode();
ByteBuffer matrixByteBuffer = ByteBuffer.wrap(ifcProduct.getGeometry().getTransformation());
matrixByteBuffer.order(ByteOrder.LITTLE_ENDIAN);
DoubleBuffer doubleBuffer = matrixByteBuffer.asDoubleBuffer();
for (int i = 0; i < 16; i++) {
matrixArray.add(doubleBuffer.get(i));
}
ArrayNode meshes = OBJECT_MAPPER.createArrayNode();
meshes.add(meshName);
nodeNode.set("meshes", meshes);
nodeNode.set("matrix", matrixArray);
nodes.set(nodeName, nodeNode);
return nodeName;
}
use of java.nio.DoubleBuffer in project GltfSerializers by opensourceBIM.
the class BinaryGltfSerializer2 method addNode.
private int addNode(int meshId, IfcProduct ifcProduct) {
ObjectNode nodeNode = OBJECT_MAPPER.createObjectNode();
ArrayNode matrixArray = OBJECT_MAPPER.createArrayNode();
ByteBuffer matrixByteBuffer = ByteBuffer.wrap(ifcProduct.getGeometry().getTransformation());
matrixByteBuffer.order(ByteOrder.LITTLE_ENDIAN);
DoubleBuffer doubleBuffer = matrixByteBuffer.asDoubleBuffer();
double[] buffer = new double[16];
for (int i = 0; i < 16; i++) {
double d = doubleBuffer.get(i);
matrixArray.add(d);
buffer[i] = d;
}
nodeNode.put("mesh", meshId);
if (!Matrix.isIdentity(buffer)) {
nodeNode.set("matrix", matrixArray);
}
nodes.add(nodeNode);
return nodes.size() - 1;
}
use of java.nio.DoubleBuffer in project GltfSerializers by opensourceBIM.
the class BinaryGltfSerializer2 method generateSceneAndBody.
private void generateSceneAndBody() throws SerializerException {
int totalBodyByteLength = 0;
int totalIndicesByteLength = 0;
int totalVerticesByteLength = 0;
int totalNormalsByteLength = 0;
int totalColorsByteLength = 0;
int maxIndexValues = 16389;
for (IfcProduct ifcProduct : model.getAllWithSubTypes(IfcProduct.class)) {
GeometryInfo geometryInfo = ifcProduct.getGeometry();
if (!ifcProduct.eClass().getName().equals("IfcOpeningElement") && geometryInfo != null && geometryInfo.getData().getVertices().length > 0) {
GeometryData data = geometryInfo.getData();
int nrIndicesBytes = data.getIndices().length;
totalIndicesByteLength += nrIndicesBytes / 2;
if (nrIndicesBytes > 4 * maxIndexValues) {
int nrIndices = nrIndicesBytes / 4;
totalVerticesByteLength += nrIndices * 3 * 4;
totalNormalsByteLength += nrIndices * 3 * 4;
if (data.getMaterials() != null) {
totalColorsByteLength += nrIndices * 4 * 4;
}
} else {
totalVerticesByteLength += data.getVertices().length;
totalNormalsByteLength += data.getNormals().length;
if (data.getMaterials() != null) {
totalColorsByteLength += data.getMaterials().length;
}
}
}
}
totalBodyByteLength = totalIndicesByteLength + totalVerticesByteLength + totalNormalsByteLength + totalColorsByteLength;
body = ByteBuffer.allocate(totalBodyByteLength + materialColorFragmentShaderBytes.length + materialColorVertexShaderBytes.length + vertexColorFragmentShaderBytes.length + vertexColorVertexShaderBytes.length);
body.order(ByteOrder.LITTLE_ENDIAN);
ByteBuffer newIndicesBuffer = ByteBuffer.allocate(totalIndicesByteLength);
newIndicesBuffer.order(ByteOrder.LITTLE_ENDIAN);
ByteBuffer newVerticesBuffer = ByteBuffer.allocate(totalVerticesByteLength);
newVerticesBuffer.order(ByteOrder.LITTLE_ENDIAN);
ByteBuffer newNormalsBuffer = ByteBuffer.allocate(totalNormalsByteLength);
newNormalsBuffer.order(ByteOrder.LITTLE_ENDIAN);
ByteBuffer newColorsBuffer = ByteBuffer.allocate(totalColorsByteLength);
newColorsBuffer.order(ByteOrder.LITTLE_ENDIAN);
int indicesBufferView = createBufferView(totalIndicesByteLength, 0, ELEMENT_ARRAY_BUFFER, -1);
int verticesBufferView = createBufferView(totalVerticesByteLength, totalIndicesByteLength, ARRAY_BUFFER, 12);
int normalsBufferView = createBufferView(totalNormalsByteLength, totalIndicesByteLength + totalVerticesByteLength, ARRAY_BUFFER, 12);
int colorsBufferView = -1;
scenesNode.add(createDefaultScene());
gltfNode.put("scene", 0);
createModelNode();
for (IfcProduct ifcProduct : model.getAllWithSubTypes(IfcProduct.class)) {
GeometryInfo geometryInfo = ifcProduct.getGeometry();
if (!ifcProduct.eClass().getName().equals("IfcOpeningElement") && geometryInfo != null) {
ByteBuffer matrixByteBuffer = ByteBuffer.wrap(ifcProduct.getGeometry().getTransformation());
matrixByteBuffer.order(ByteOrder.LITTLE_ENDIAN);
DoubleBuffer doubleBuffer = matrixByteBuffer.asDoubleBuffer();
float[] matrix = new float[16];
for (int i = 0; i < doubleBuffer.capacity(); i++) {
matrix[i] = (float) doubleBuffer.get();
}
updateExtends(geometryInfo, matrix);
}
}
float[] offsets = getOffsets();
// This will "normalize" the model by moving it's axis-aligned bounding box center to the 0-point. This will always be the wrong position, but at least the building will be close to the 0-point
modelTranslation.add(-offsets[0]);
modelTranslation.add(-offsets[1]);
modelTranslation.add(-offsets[2]);
for (IfcProduct ifcProduct : model.getAllWithSubTypes(IfcProduct.class)) {
GeometryInfo geometryInfo = ifcProduct.getGeometry();
if (!ifcProduct.eClass().getName().equals("IfcOpeningElement") && geometryInfo != null && geometryInfo.getData().getVertices().length > 0) {
int startPositionIndices = newIndicesBuffer.position();
int startPositionVertices = newVerticesBuffer.position();
int startPositionNormals = newNormalsBuffer.position();
int startPositionColors = newColorsBuffer.position();
GeometryData data = geometryInfo.getData();
ByteBuffer indicesBuffer = ByteBuffer.wrap(data.getIndices());
indicesBuffer.order(ByteOrder.LITTLE_ENDIAN);
IntBuffer indicesIntBuffer = indicesBuffer.asIntBuffer();
ByteBuffer verticesBuffer = ByteBuffer.wrap(data.getVertices());
verticesBuffer.order(ByteOrder.LITTLE_ENDIAN);
FloatBuffer verticesFloatBuffer = verticesBuffer.asFloatBuffer();
ByteBuffer normalsBuffer = ByteBuffer.wrap(data.getNormals());
normalsBuffer.order(ByteOrder.LITTLE_ENDIAN);
FloatBuffer normalsFloatBuffer = normalsBuffer.asFloatBuffer();
FloatBuffer materialsFloatBuffer = null;
if (data.getMaterials() != null) {
ByteBuffer materialsBuffer = ByteBuffer.wrap(data.getMaterials());
materialsBuffer.order(ByteOrder.LITTLE_ENDIAN);
materialsFloatBuffer = materialsBuffer.asFloatBuffer();
}
if (data.getIndices().length > 4 * maxIndexValues) {
int totalNrIndices = indicesIntBuffer.capacity();
int nrParts = (totalNrIndices + maxIndexValues - 1) / maxIndexValues;
ArrayNode primitivesNode = OBJECT_MAPPER.createArrayNode();
for (int part = 0; part < nrParts; part++) {
startPositionIndices = newIndicesBuffer.position();
startPositionVertices = newVerticesBuffer.position();
startPositionNormals = newNormalsBuffer.position();
startPositionColors = newColorsBuffer.position();
short indexCounter = 0;
int upto = Math.min((part + 1) * maxIndexValues, totalNrIndices);
for (int i = part * maxIndexValues; i < upto; i++) {
newIndicesBuffer.putShort(indexCounter++);
}
int[] min = new int[] { 0 };
int[] max = new int[] { upto };
int nrVertices = upto - part * maxIndexValues;
for (int i = part * maxIndexValues; i < upto; i += 3) {
int oldIndex1 = indicesIntBuffer.get(i);
int oldIndex2 = indicesIntBuffer.get(i + 1);
int oldIndex3 = indicesIntBuffer.get(i + 2);
newVerticesBuffer.putFloat(verticesFloatBuffer.get(oldIndex1 * 3));
newVerticesBuffer.putFloat(verticesFloatBuffer.get(oldIndex1 * 3 + 1));
newVerticesBuffer.putFloat(verticesFloatBuffer.get(oldIndex1 * 3 + 2));
newVerticesBuffer.putFloat(verticesFloatBuffer.get(oldIndex2 * 3));
newVerticesBuffer.putFloat(verticesFloatBuffer.get(oldIndex2 * 3 + 1));
newVerticesBuffer.putFloat(verticesFloatBuffer.get(oldIndex2 * 3 + 2));
newVerticesBuffer.putFloat(verticesFloatBuffer.get(oldIndex3 * 3));
newVerticesBuffer.putFloat(verticesFloatBuffer.get(oldIndex3 * 3 + 1));
newVerticesBuffer.putFloat(verticesFloatBuffer.get(oldIndex3 * 3 + 2));
}
for (int i = part * maxIndexValues; i < upto; i += 3) {
int oldIndex1 = indicesIntBuffer.get(i);
int oldIndex2 = indicesIntBuffer.get(i + 1);
int oldIndex3 = indicesIntBuffer.get(i + 2);
newNormalsBuffer.putFloat(normalsFloatBuffer.get(oldIndex1 * 3));
newNormalsBuffer.putFloat(normalsFloatBuffer.get(oldIndex1 * 3 + 1));
newNormalsBuffer.putFloat(normalsFloatBuffer.get(oldIndex1 * 3 + 2));
newNormalsBuffer.putFloat(normalsFloatBuffer.get(oldIndex2 * 3));
newNormalsBuffer.putFloat(normalsFloatBuffer.get(oldIndex2 * 3 + 1));
newNormalsBuffer.putFloat(normalsFloatBuffer.get(oldIndex2 * 3 + 2));
newNormalsBuffer.putFloat(normalsFloatBuffer.get(oldIndex3 * 3));
newNormalsBuffer.putFloat(normalsFloatBuffer.get(oldIndex3 * 3 + 1));
newNormalsBuffer.putFloat(normalsFloatBuffer.get(oldIndex3 * 3 + 2));
}
if (materialsFloatBuffer != null) {
for (int i = part * maxIndexValues; i < upto; i += 3) {
int oldIndex1 = indicesIntBuffer.get(i);
int oldIndex2 = indicesIntBuffer.get(i + 1);
int oldIndex3 = indicesIntBuffer.get(i + 2);
newColorsBuffer.putFloat(materialsFloatBuffer.get(oldIndex1 * 4));
newColorsBuffer.putFloat(materialsFloatBuffer.get(oldIndex1 * 4 + 1));
newColorsBuffer.putFloat(materialsFloatBuffer.get(oldIndex1 * 4 + 2));
newColorsBuffer.putFloat(materialsFloatBuffer.get(oldIndex1 * 4 + 3));
newColorsBuffer.putFloat(materialsFloatBuffer.get(oldIndex2 * 4));
newColorsBuffer.putFloat(materialsFloatBuffer.get(oldIndex2 * 4 + 1));
newColorsBuffer.putFloat(materialsFloatBuffer.get(oldIndex2 * 4 + 2));
newColorsBuffer.putFloat(materialsFloatBuffer.get(oldIndex2 * 4 + 3));
newColorsBuffer.putFloat(materialsFloatBuffer.get(oldIndex3 * 4));
newColorsBuffer.putFloat(materialsFloatBuffer.get(oldIndex3 * 4 + 1));
newColorsBuffer.putFloat(materialsFloatBuffer.get(oldIndex3 * 4 + 2));
newColorsBuffer.putFloat(materialsFloatBuffer.get(oldIndex3 * 4 + 3));
}
}
ObjectNode primitiveNode = OBJECT_MAPPER.createObjectNode();
int indicesAccessor = addIndicesAccessor(ifcProduct, indicesBufferView, startPositionIndices, nrVertices / 3, min, max);
int verticesAccessor = addVerticesAccessor(ifcProduct, verticesBufferView, startPositionVertices, nrVertices);
int normalsAccessor = addNormalsAccessor(ifcProduct, normalsBufferView, startPositionNormals, nrVertices);
int colorAccessor = -1;
if (data.getMaterials() != null) {
if (colorsBufferView == -1) {
colorsBufferView = createBufferView(totalColorsByteLength, totalIndicesByteLength + totalVerticesByteLength + totalNormalsByteLength, ARRAY_BUFFER, 16);
}
colorAccessor = addColorsAccessor(ifcProduct, colorsBufferView, startPositionColors, 16);
}
primitivesNode.add(primitiveNode);
primitiveNode.put("indices", indicesAccessor);
primitiveNode.put("mode", TRIANGLES);
ObjectNode attributesNode = OBJECT_MAPPER.createObjectNode();
primitiveNode.set("attributes", attributesNode);
attributesNode.put("NORMAL", normalsAccessor);
attributesNode.put("POSITION", verticesAccessor);
if (colorAccessor != -1) {
// attributesNode.put("COLOR_0", colorAccessor);
primitiveNode.put("material", vertexColorIndex);
} else {
primitiveNode.put("material", createOrGetMaterial(ifcProduct.eClass().getName(), IfcColors.getDefaultColor(ifcProduct.eClass().getName())));
}
}
int meshId = addMesh(ifcProduct, primitivesNode);
int nodeId = addNode(meshId, ifcProduct);
translationChildrenNode.add(nodeId);
} else {
int maxVal = 0;
for (int i = 0; i < indicesIntBuffer.capacity(); i++) {
int index = indicesIntBuffer.get(i);
if (index > Short.MAX_VALUE) {
throw new SerializerException("Index too large to store as short " + index);
}
newIndicesBuffer.putShort((short) (index));
if (index > maxVal) {
maxVal = index;
}
}
int[] min = new int[] { 0 };
int[] max = new int[] { maxVal };
newVerticesBuffer.put(data.getVertices());
newNormalsBuffer.put(data.getNormals());
if (data.getMaterials() != null) {
newColorsBuffer.put(data.getMaterials());
}
int totalNrIndices = indicesIntBuffer.capacity();
ArrayNode primitivesNode = OBJECT_MAPPER.createArrayNode();
ObjectNode primitiveNode = OBJECT_MAPPER.createObjectNode();
int indicesAccessor = addIndicesAccessor(ifcProduct, indicesBufferView, startPositionIndices, totalNrIndices, min, max);
int verticesAccessor = addVerticesAccessor(ifcProduct, verticesBufferView, startPositionVertices, data.getVertices().length / 12);
int normalsAccessor = addNormalsAccessor(ifcProduct, normalsBufferView, startPositionNormals, data.getNormals().length / 12);
int colorAccessor = -1;
if (data.getMaterials() != null) {
if (colorsBufferView == -1) {
colorsBufferView = createBufferView(totalColorsByteLength, totalIndicesByteLength + totalVerticesByteLength + totalNormalsByteLength, ARRAY_BUFFER, 16);
}
colorAccessor = addColorsAccessor(ifcProduct, colorsBufferView, startPositionColors, data.getVertices().length / 12);
}
primitivesNode.add(primitiveNode);
primitiveNode.put("indices", indicesAccessor);
primitiveNode.put("mode", TRIANGLES);
ObjectNode attributesNode = OBJECT_MAPPER.createObjectNode();
primitiveNode.set("attributes", attributesNode);
attributesNode.put("NORMAL", normalsAccessor);
attributesNode.put("POSITION", verticesAccessor);
if (colorAccessor != -1) {
attributesNode.put("COLOR_0", colorAccessor);
primitiveNode.put("material", vertexColorIndex);
} else {
primitiveNode.put("material", createOrGetMaterial(ifcProduct.eClass().getName(), IfcColors.getDefaultColor(ifcProduct.eClass().getName())));
}
int meshId = addMesh(ifcProduct, primitivesNode);
int nodeId = addNode(meshId, ifcProduct);
translationChildrenNode.add(nodeId);
}
}
}
if (newIndicesBuffer.position() != newIndicesBuffer.capacity()) {
throw new SerializerException("Not all space used");
}
if (newVerticesBuffer.position() != newVerticesBuffer.capacity()) {
throw new SerializerException("Not all space used");
}
if (newNormalsBuffer.position() != newNormalsBuffer.capacity()) {
throw new SerializerException("Not all space used");
}
if (newColorsBuffer.position() != newColorsBuffer.capacity()) {
throw new SerializerException("Not all space used");
}
newIndicesBuffer.position(0);
newVerticesBuffer.position(0);
newNormalsBuffer.position(0);
newColorsBuffer.position(0);
body.put(newIndicesBuffer);
body.put(newVerticesBuffer);
body.put(newNormalsBuffer);
body.put(newColorsBuffer);
int vertexColorFragmentShaderBufferViewName = createBufferView(vertexColorFragmentShaderBytes.length, body.position(), -1, -1);
body.put(vertexColorFragmentShaderBytes);
int vertexColorVertexShaderBufferViewName = createBufferView(vertexColorVertexShaderBytes.length, body.position(), -1, -1);
body.put(vertexColorVertexShaderBytes);
int materialColorFragmentShaderBufferViewName = createBufferView(materialColorFragmentShaderBytes.length, body.position(), -1, -1);
body.put(materialColorFragmentShaderBytes);
int materialColorVertexShaderBufferViewName = createBufferView(materialColorVertexShaderBytes.length, body.position(), -1, -1);
body.put(materialColorVertexShaderBytes);
// gltfNode.set("animations", createAnimations());
gltfNode.set("asset", createAsset());
// gltfNode.set("programs", createPrograms());
gltfNode.put("scene", 0);
// gltfNode.set("skins", createSkins());
// gltfNode.set("techniques", createTechniques());
// createVertexColorShaders(vertexColorFragmentShaderBufferViewName, vertexColorVertexShaderBufferViewName);
// createMaterialColorShaders(materialColorFragmentShaderBufferViewName, materialColorVertexShaderBufferViewName);
addBuffer(body.capacity());
// ArrayNode extensions = OBJECT_MAPPER.createArrayNode();
// extensions.add("KHR_binary_glTF");
// gltfNode.set("extensionsUsed", extensions);
}
use of java.nio.DoubleBuffer in project javacv by bytedeco.
the class FFmpegFrameRecorder method recordSamples.
public boolean recordSamples(int sampleRate, int audioChannels, Buffer... samples) throws Exception {
if (audio_st == null) {
throw new Exception("No audio output stream (Is audioChannels > 0 and has start() been called?)");
}
if (samples == null && samples_out[0].position() > 0) {
// Typically samples_out[0].limit() is double the audio_input_frame_size --> sampleDivisor = 2
double sampleDivisor = Math.floor((int) Math.min(samples_out[0].limit(), Integer.MAX_VALUE) / audio_input_frame_size);
writeSamples((int) Math.floor((int) samples_out[0].position() / sampleDivisor));
return record((AVFrame) null);
}
int ret;
if (sampleRate <= 0) {
sampleRate = audio_c.sample_rate();
}
if (audioChannels <= 0) {
audioChannels = audio_c.channels();
}
int inputSize = samples != null ? samples[0].limit() - samples[0].position() : 0;
int inputFormat = samples_format;
int inputChannels = samples != null && samples.length > 1 ? 1 : audioChannels;
int inputDepth = 0;
int outputFormat = audio_c.sample_fmt();
int outputChannels = samples_out.length > 1 ? 1 : audio_c.channels();
int outputDepth = av_get_bytes_per_sample(outputFormat);
if (samples != null && samples[0] instanceof ByteBuffer) {
inputFormat = samples.length > 1 ? AV_SAMPLE_FMT_U8P : AV_SAMPLE_FMT_U8;
inputDepth = 1;
for (int i = 0; i < samples.length; i++) {
ByteBuffer b = (ByteBuffer) samples[i];
if (samples_in[i] instanceof BytePointer && samples_in[i].capacity() >= inputSize && b.hasArray()) {
((BytePointer) samples_in[i]).position(0).put(b.array(), b.position(), inputSize);
} else {
samples_in[i] = new BytePointer(b);
}
}
} else if (samples != null && samples[0] instanceof ShortBuffer) {
inputFormat = samples.length > 1 ? AV_SAMPLE_FMT_S16P : AV_SAMPLE_FMT_S16;
inputDepth = 2;
for (int i = 0; i < samples.length; i++) {
ShortBuffer b = (ShortBuffer) samples[i];
if (samples_in[i] instanceof ShortPointer && samples_in[i].capacity() >= inputSize && b.hasArray()) {
((ShortPointer) samples_in[i]).position(0).put(b.array(), samples[i].position(), inputSize);
} else {
samples_in[i] = new ShortPointer(b);
}
}
} else if (samples != null && samples[0] instanceof IntBuffer) {
inputFormat = samples.length > 1 ? AV_SAMPLE_FMT_S32P : AV_SAMPLE_FMT_S32;
inputDepth = 4;
for (int i = 0; i < samples.length; i++) {
IntBuffer b = (IntBuffer) samples[i];
if (samples_in[i] instanceof IntPointer && samples_in[i].capacity() >= inputSize && b.hasArray()) {
((IntPointer) samples_in[i]).position(0).put(b.array(), samples[i].position(), inputSize);
} else {
samples_in[i] = new IntPointer(b);
}
}
} else if (samples != null && samples[0] instanceof FloatBuffer) {
inputFormat = samples.length > 1 ? AV_SAMPLE_FMT_FLTP : AV_SAMPLE_FMT_FLT;
inputDepth = 4;
for (int i = 0; i < samples.length; i++) {
FloatBuffer b = (FloatBuffer) samples[i];
if (samples_in[i] instanceof FloatPointer && samples_in[i].capacity() >= inputSize && b.hasArray()) {
((FloatPointer) samples_in[i]).position(0).put(b.array(), b.position(), inputSize);
} else {
samples_in[i] = new FloatPointer(b);
}
}
} else if (samples != null && samples[0] instanceof DoubleBuffer) {
inputFormat = samples.length > 1 ? AV_SAMPLE_FMT_DBLP : AV_SAMPLE_FMT_DBL;
inputDepth = 8;
for (int i = 0; i < samples.length; i++) {
DoubleBuffer b = (DoubleBuffer) samples[i];
if (samples_in[i] instanceof DoublePointer && samples_in[i].capacity() >= inputSize && b.hasArray()) {
((DoublePointer) samples_in[i]).position(0).put(b.array(), b.position(), inputSize);
} else {
samples_in[i] = new DoublePointer(b);
}
}
} else if (samples != null) {
throw new Exception("Audio samples Buffer has unsupported type: " + samples);
}
if (samples_convert_ctx == null || samples_channels != audioChannels || samples_format != inputFormat || samples_rate != sampleRate) {
samples_convert_ctx = swr_alloc_set_opts(samples_convert_ctx, audio_c.channel_layout(), outputFormat, audio_c.sample_rate(), av_get_default_channel_layout(audioChannels), inputFormat, sampleRate, 0, null);
if (samples_convert_ctx == null) {
throw new Exception("swr_alloc_set_opts() error: Cannot allocate the conversion context.");
} else if ((ret = swr_init(samples_convert_ctx)) < 0) {
throw new Exception("swr_init() error " + ret + ": Cannot initialize the conversion context.");
}
samples_channels = audioChannels;
samples_format = inputFormat;
samples_rate = sampleRate;
}
for (int i = 0; samples != null && i < samples.length; i++) {
samples_in[i].position(samples_in[i].position() * inputDepth).limit((samples_in[i].position() + inputSize) * inputDepth);
}
while (true) {
int inputCount = (int) Math.min(samples != null ? (samples_in[0].limit() - samples_in[0].position()) / (inputChannels * inputDepth) : 0, Integer.MAX_VALUE);
int outputCount = (int) Math.min((samples_out[0].limit() - samples_out[0].position()) / (outputChannels * outputDepth), Integer.MAX_VALUE);
inputCount = Math.min(inputCount, (outputCount * sampleRate + audio_c.sample_rate() - 1) / audio_c.sample_rate());
for (int i = 0; samples != null && i < samples.length; i++) {
samples_in_ptr.put(i, samples_in[i]);
}
for (int i = 0; i < samples_out.length; i++) {
samples_out_ptr.put(i, samples_out[i]);
}
if ((ret = swr_convert(samples_convert_ctx, samples_out_ptr, outputCount, samples_in_ptr, inputCount)) < 0) {
throw new Exception("swr_convert() error " + ret + ": Cannot convert audio samples.");
} else if (ret == 0) {
break;
}
for (int i = 0; samples != null && i < samples.length; i++) {
samples_in[i].position(samples_in[i].position() + inputCount * inputChannels * inputDepth);
}
for (int i = 0; i < samples_out.length; i++) {
samples_out[i].position(samples_out[i].position() + ret * outputChannels * outputDepth);
}
if (samples == null || samples_out[0].position() >= samples_out[0].limit()) {
writeSamples(audio_input_frame_size);
}
}
return samples != null ? frame.key_frame() != 0 : record((AVFrame) null);
}
Aggregations