use of jdk.internal.org.objectweb.asm.tree.JumpInsnNode in project Bytecoder by mirkosertic.
the class JSRInlinerAdapter method emitSubroutine.
/**
* Emits one instantiation of one subroutine, specified by
* <code>instant</code>. May add new instantiations that are invoked by this
* one to the <code>worklist</code> parameter, and new try/catch blocks to
* <code>newTryCatchBlocks</code>.
*
* @param instant
* the instantiation that must be performed.
* @param worklist
* list of the instantiations that remain to be done.
* @param newInstructions
* the instruction list to which the instantiated code must be
* appended.
* @param newTryCatchBlocks
* the exception handler list to which the instantiated handlers
* must be appended.
*/
private void emitSubroutine(final Instantiation instant, final List<Instantiation> worklist, final InsnList newInstructions, final List<TryCatchBlockNode> newTryCatchBlocks, final List<LocalVariableNode> newLocalVariables) {
LabelNode duplbl = null;
if (LOGGING) {
log("--------------------------------------------------------");
log("Emitting instantiation of subroutine " + instant.subroutine);
}
// labels and jump targets as we go:
for (int i = 0, c = instructions.size(); i < c; i++) {
AbstractInsnNode insn = instructions.get(i);
Instantiation owner = instant.findOwner(i);
// Always remap labels:
if (insn.getType() == AbstractInsnNode.LABEL) {
// Translate labels into their renamed equivalents.
// Avoid adding the same label more than once. Note
// that because we own this instruction the gotoTable
// and the rangeTable will always agree.
LabelNode ilbl = (LabelNode) insn;
LabelNode remap = instant.rangeLabel(ilbl);
if (LOGGING) {
// TODO use of default toString().
log("Translating lbl #" + i + ':' + ilbl + " to " + remap);
}
if (remap != duplbl) {
newInstructions.add(remap);
duplbl = remap;
}
continue;
}
// that do not invoke each other.
if (owner != instant) {
continue;
}
if (LOGGING) {
log("Emitting inst #" + i);
}
if (insn.getOpcode() == RET) {
// Translate RET instruction(s) to a jump to the return label
// for the appropriate instantiation. The problem is that the
// subroutine may "fall through" to the ret of a parent
// subroutine; therefore, to find the appropriate ret label we
// find the lowest subroutine on the stack that claims to own
// this instruction. See the class javadoc comment for an
// explanation on why this technique is safe (note: it is only
// safe if the input is verifiable).
LabelNode retlabel = null;
for (Instantiation p = instant; p != null; p = p.previous) {
if (p.subroutine.get(i)) {
retlabel = p.returnLabel;
}
}
if (retlabel == null) {
// code.
throw new RuntimeException("Instruction #" + i + " is a RET not owned by any subroutine");
}
newInstructions.add(new JumpInsnNode(GOTO, retlabel));
} else if (insn.getOpcode() == JSR) {
LabelNode lbl = ((JumpInsnNode) insn).label;
BitSet sub = subroutineHeads.get(lbl);
Instantiation newinst = new Instantiation(instant, sub);
LabelNode startlbl = newinst.gotoLabel(lbl);
if (LOGGING) {
log(" Creating instantiation of subr " + sub);
}
// Rather than JSRing, we will jump to the inline version and
// push NULL for what was once the return value. This hack
// allows us to avoid doing any sort of data flow analysis to
// figure out which instructions manipulate the old return value
// pointer which is now known to be unneeded.
newInstructions.add(new InsnNode(ACONST_NULL));
newInstructions.add(new JumpInsnNode(GOTO, startlbl));
newInstructions.add(newinst.returnLabel);
// Insert this new instantiation into the queue to be emitted
// later.
worklist.add(newinst);
} else {
newInstructions.add(insn.clone(instant));
}
}
// Emit try/catch blocks that are relevant to this method.
for (Iterator<TryCatchBlockNode> it = tryCatchBlocks.iterator(); it.hasNext(); ) {
TryCatchBlockNode trycatch = it.next();
if (LOGGING) {
// TODO use of default toString().
log("try catch block original labels=" + trycatch.start + '-' + trycatch.end + "->" + trycatch.handler);
}
final LabelNode start = instant.rangeLabel(trycatch.start);
final LabelNode end = instant.rangeLabel(trycatch.end);
// Ignore empty try/catch regions
if (start == end) {
if (LOGGING) {
log(" try catch block empty in this subroutine");
}
continue;
}
final LabelNode handler = instant.gotoLabel(trycatch.handler);
if (LOGGING) {
// TODO use of default toString().
log(" try catch block new labels=" + start + '-' + end + "->" + handler);
}
if (start == null || end == null || handler == null) {
throw new RuntimeException("Internal error!");
}
newTryCatchBlocks.add(new TryCatchBlockNode(start, end, handler, trycatch.type));
}
for (Iterator<LocalVariableNode> it = localVariables.iterator(); it.hasNext(); ) {
LocalVariableNode lvnode = it.next();
if (LOGGING) {
log("local var " + lvnode.name);
}
final LabelNode start = instant.rangeLabel(lvnode.start);
final LabelNode end = instant.rangeLabel(lvnode.end);
if (start == end) {
if (LOGGING) {
log(" local variable empty in this sub");
}
continue;
}
newLocalVariables.add(new LocalVariableNode(lvnode.name, lvnode.desc, lvnode.signature, start, end, lvnode.index));
}
}
use of jdk.internal.org.objectweb.asm.tree.JumpInsnNode in project jdk8u_jdk by JetBrains.
the class JSRInlinerAdapter method emitSubroutine.
/**
* Emits one instantiation of one subroutine, specified by
* <code>instant</code>. May add new instantiations that are invoked by this
* one to the <code>worklist</code> parameter, and new try/catch blocks to
* <code>newTryCatchBlocks</code>.
*
* @param instant
* the instantiation that must be performed.
* @param worklist
* list of the instantiations that remain to be done.
* @param newInstructions
* the instruction list to which the instantiated code must be
* appended.
* @param newTryCatchBlocks
* the exception handler list to which the instantiated handlers
* must be appended.
*/
private void emitSubroutine(final Instantiation instant, final List<Instantiation> worklist, final InsnList newInstructions, final List<TryCatchBlockNode> newTryCatchBlocks, final List<LocalVariableNode> newLocalVariables) {
LabelNode duplbl = null;
if (LOGGING) {
log("--------------------------------------------------------");
log("Emitting instantiation of subroutine " + instant.subroutine);
}
// labels and jump targets as we go:
for (int i = 0, c = instructions.size(); i < c; i++) {
AbstractInsnNode insn = instructions.get(i);
Instantiation owner = instant.findOwner(i);
// Always remap labels:
if (insn.getType() == AbstractInsnNode.LABEL) {
// Translate labels into their renamed equivalents.
// Avoid adding the same label more than once. Note
// that because we own this instruction the gotoTable
// and the rangeTable will always agree.
LabelNode ilbl = (LabelNode) insn;
LabelNode remap = instant.rangeLabel(ilbl);
if (LOGGING) {
// TODO use of default toString().
log("Translating lbl #" + i + ':' + ilbl + " to " + remap);
}
if (remap != duplbl) {
newInstructions.add(remap);
duplbl = remap;
}
continue;
}
// that do not invoke each other.
if (owner != instant) {
continue;
}
if (LOGGING) {
log("Emitting inst #" + i);
}
if (insn.getOpcode() == RET) {
// Translate RET instruction(s) to a jump to the return label
// for the appropriate instantiation. The problem is that the
// subroutine may "fall through" to the ret of a parent
// subroutine; therefore, to find the appropriate ret label we
// find the lowest subroutine on the stack that claims to own
// this instruction. See the class javadoc comment for an
// explanation on why this technique is safe (note: it is only
// safe if the input is verifiable).
LabelNode retlabel = null;
for (Instantiation p = instant; p != null; p = p.previous) {
if (p.subroutine.get(i)) {
retlabel = p.returnLabel;
}
}
if (retlabel == null) {
// code.
throw new RuntimeException("Instruction #" + i + " is a RET not owned by any subroutine");
}
newInstructions.add(new JumpInsnNode(GOTO, retlabel));
} else if (insn.getOpcode() == JSR) {
LabelNode lbl = ((JumpInsnNode) insn).label;
BitSet sub = subroutineHeads.get(lbl);
Instantiation newinst = new Instantiation(instant, sub);
LabelNode startlbl = newinst.gotoLabel(lbl);
if (LOGGING) {
log(" Creating instantiation of subr " + sub);
}
// Rather than JSRing, we will jump to the inline version and
// push NULL for what was once the return value. This hack
// allows us to avoid doing any sort of data flow analysis to
// figure out which instructions manipulate the old return value
// pointer which is now known to be unneeded.
newInstructions.add(new InsnNode(ACONST_NULL));
newInstructions.add(new JumpInsnNode(GOTO, startlbl));
newInstructions.add(newinst.returnLabel);
// Insert this new instantiation into the queue to be emitted
// later.
worklist.add(newinst);
} else {
newInstructions.add(insn.clone(instant));
}
}
// Emit try/catch blocks that are relevant to this method.
for (Iterator<TryCatchBlockNode> it = tryCatchBlocks.iterator(); it.hasNext(); ) {
TryCatchBlockNode trycatch = it.next();
if (LOGGING) {
// TODO use of default toString().
log("try catch block original labels=" + trycatch.start + '-' + trycatch.end + "->" + trycatch.handler);
}
final LabelNode start = instant.rangeLabel(trycatch.start);
final LabelNode end = instant.rangeLabel(trycatch.end);
// Ignore empty try/catch regions
if (start == end) {
if (LOGGING) {
log(" try catch block empty in this subroutine");
}
continue;
}
final LabelNode handler = instant.gotoLabel(trycatch.handler);
if (LOGGING) {
// TODO use of default toString().
log(" try catch block new labels=" + start + '-' + end + "->" + handler);
}
if (start == null || end == null || handler == null) {
throw new RuntimeException("Internal error!");
}
newTryCatchBlocks.add(new TryCatchBlockNode(start, end, handler, trycatch.type));
}
for (Iterator<LocalVariableNode> it = localVariables.iterator(); it.hasNext(); ) {
LocalVariableNode lvnode = it.next();
if (LOGGING) {
log("local var " + lvnode.name);
}
final LabelNode start = instant.rangeLabel(lvnode.start);
final LabelNode end = instant.rangeLabel(lvnode.end);
if (start == end) {
if (LOGGING) {
log(" local variable empty in this sub");
}
continue;
}
newLocalVariables.add(new LocalVariableNode(lvnode.name, lvnode.desc, lvnode.signature, start, end, lvnode.index));
}
}
use of jdk.internal.org.objectweb.asm.tree.JumpInsnNode in project jdk8u_jdk by JetBrains.
the class Analyzer method analyze.
/**
* Analyzes the given method.
*
* @param owner
* the internal name of the class to which the method belongs.
* @param m
* the method to be analyzed.
* @return the symbolic state of the execution stack frame at each bytecode
* instruction of the method. The size of the returned array is
* equal to the number of instructions (and labels) of the method. A
* given frame is <tt>null</tt> if and only if the corresponding
* instruction cannot be reached (dead code).
* @throws AnalyzerException
* if a problem occurs during the analysis.
*/
@SuppressWarnings("unchecked")
public Frame<V>[] analyze(final String owner, final MethodNode m) throws AnalyzerException {
if ((m.access & (ACC_ABSTRACT | ACC_NATIVE)) != 0) {
frames = (Frame<V>[]) new Frame<?>[0];
return frames;
}
n = m.instructions.size();
insns = m.instructions;
handlers = (List<TryCatchBlockNode>[]) new List<?>[n];
frames = (Frame<V>[]) new Frame<?>[n];
subroutines = new Subroutine[n];
queued = new boolean[n];
queue = new int[n];
top = 0;
// computes exception handlers for each instruction
for (int i = 0; i < m.tryCatchBlocks.size(); ++i) {
TryCatchBlockNode tcb = m.tryCatchBlocks.get(i);
int begin = insns.indexOf(tcb.start);
int end = insns.indexOf(tcb.end);
for (int j = begin; j < end; ++j) {
List<TryCatchBlockNode> insnHandlers = handlers[j];
if (insnHandlers == null) {
insnHandlers = new ArrayList<TryCatchBlockNode>();
handlers[j] = insnHandlers;
}
insnHandlers.add(tcb);
}
}
// computes the subroutine for each instruction:
Subroutine main = new Subroutine(null, m.maxLocals, null);
List<AbstractInsnNode> subroutineCalls = new ArrayList<AbstractInsnNode>();
Map<LabelNode, Subroutine> subroutineHeads = new HashMap<LabelNode, Subroutine>();
findSubroutine(0, main, subroutineCalls);
while (!subroutineCalls.isEmpty()) {
JumpInsnNode jsr = (JumpInsnNode) subroutineCalls.remove(0);
Subroutine sub = subroutineHeads.get(jsr.label);
if (sub == null) {
sub = new Subroutine(jsr.label, m.maxLocals, jsr);
subroutineHeads.put(jsr.label, sub);
findSubroutine(insns.indexOf(jsr.label), sub, subroutineCalls);
} else {
sub.callers.add(jsr);
}
}
for (int i = 0; i < n; ++i) {
if (subroutines[i] != null && subroutines[i].start == null) {
subroutines[i] = null;
}
}
// initializes the data structures for the control flow analysis
Frame<V> current = newFrame(m.maxLocals, m.maxStack);
Frame<V> handler = newFrame(m.maxLocals, m.maxStack);
current.setReturn(interpreter.newValue(Type.getReturnType(m.desc)));
Type[] args = Type.getArgumentTypes(m.desc);
int local = 0;
if ((m.access & ACC_STATIC) == 0) {
Type ctype = Type.getObjectType(owner);
current.setLocal(local++, interpreter.newValue(ctype));
}
for (int i = 0; i < args.length; ++i) {
current.setLocal(local++, interpreter.newValue(args[i]));
if (args[i].getSize() == 2) {
current.setLocal(local++, interpreter.newValue(null));
}
}
while (local < m.maxLocals) {
current.setLocal(local++, interpreter.newValue(null));
}
merge(0, current, null);
init(owner, m);
// control flow analysis
while (top > 0) {
int insn = queue[--top];
Frame<V> f = frames[insn];
Subroutine subroutine = subroutines[insn];
queued[insn] = false;
AbstractInsnNode insnNode = null;
try {
insnNode = m.instructions.get(insn);
int insnOpcode = insnNode.getOpcode();
int insnType = insnNode.getType();
if (insnType == AbstractInsnNode.LABEL || insnType == AbstractInsnNode.LINE || insnType == AbstractInsnNode.FRAME) {
merge(insn + 1, f, subroutine);
newControlFlowEdge(insn, insn + 1);
} else {
current.init(f).execute(insnNode, interpreter);
subroutine = subroutine == null ? null : subroutine.copy();
if (insnNode instanceof JumpInsnNode) {
JumpInsnNode j = (JumpInsnNode) insnNode;
if (insnOpcode != GOTO && insnOpcode != JSR) {
merge(insn + 1, current, subroutine);
newControlFlowEdge(insn, insn + 1);
}
int jump = insns.indexOf(j.label);
if (insnOpcode == JSR) {
merge(jump, current, new Subroutine(j.label, m.maxLocals, j));
} else {
merge(jump, current, subroutine);
}
newControlFlowEdge(insn, jump);
} else if (insnNode instanceof LookupSwitchInsnNode) {
LookupSwitchInsnNode lsi = (LookupSwitchInsnNode) insnNode;
int jump = insns.indexOf(lsi.dflt);
merge(jump, current, subroutine);
newControlFlowEdge(insn, jump);
for (int j = 0; j < lsi.labels.size(); ++j) {
LabelNode label = lsi.labels.get(j);
jump = insns.indexOf(label);
merge(jump, current, subroutine);
newControlFlowEdge(insn, jump);
}
} else if (insnNode instanceof TableSwitchInsnNode) {
TableSwitchInsnNode tsi = (TableSwitchInsnNode) insnNode;
int jump = insns.indexOf(tsi.dflt);
merge(jump, current, subroutine);
newControlFlowEdge(insn, jump);
for (int j = 0; j < tsi.labels.size(); ++j) {
LabelNode label = tsi.labels.get(j);
jump = insns.indexOf(label);
merge(jump, current, subroutine);
newControlFlowEdge(insn, jump);
}
} else if (insnOpcode == RET) {
if (subroutine == null) {
throw new AnalyzerException(insnNode, "RET instruction outside of a sub routine");
}
for (int i = 0; i < subroutine.callers.size(); ++i) {
JumpInsnNode caller = subroutine.callers.get(i);
int call = insns.indexOf(caller);
if (frames[call] != null) {
merge(call + 1, frames[call], current, subroutines[call], subroutine.access);
newControlFlowEdge(insn, call + 1);
}
}
} else if (insnOpcode != ATHROW && (insnOpcode < IRETURN || insnOpcode > RETURN)) {
if (subroutine != null) {
if (insnNode instanceof VarInsnNode) {
int var = ((VarInsnNode) insnNode).var;
subroutine.access[var] = true;
if (insnOpcode == LLOAD || insnOpcode == DLOAD || insnOpcode == LSTORE || insnOpcode == DSTORE) {
subroutine.access[var + 1] = true;
}
} else if (insnNode instanceof IincInsnNode) {
int var = ((IincInsnNode) insnNode).var;
subroutine.access[var] = true;
}
}
merge(insn + 1, current, subroutine);
newControlFlowEdge(insn, insn + 1);
}
}
List<TryCatchBlockNode> insnHandlers = handlers[insn];
if (insnHandlers != null) {
for (int i = 0; i < insnHandlers.size(); ++i) {
TryCatchBlockNode tcb = insnHandlers.get(i);
Type type;
if (tcb.type == null) {
type = Type.getObjectType("java/lang/Throwable");
} else {
type = Type.getObjectType(tcb.type);
}
int jump = insns.indexOf(tcb.handler);
if (newControlFlowExceptionEdge(insn, tcb)) {
handler.init(f);
handler.clearStack();
handler.push(interpreter.newValue(type));
merge(jump, handler, subroutine);
}
}
}
} catch (AnalyzerException e) {
throw new AnalyzerException(e.node, "Error at instruction " + insn + ": " + e.getMessage(), e);
} catch (Exception e) {
throw new AnalyzerException(insnNode, "Error at instruction " + insn + ": " + e.getMessage(), e);
}
}
return frames;
}
use of jdk.internal.org.objectweb.asm.tree.JumpInsnNode in project jdk8u_jdk by JetBrains.
the class JSRInlinerAdapter method visitJumpInsn.
/**
* Detects a JSR instruction and sets a flag to indicate we will need to do
* inlining.
*/
@Override
public void visitJumpInsn(final int opcode, final Label lbl) {
super.visitJumpInsn(opcode, lbl);
LabelNode ln = ((JumpInsnNode) instructions.getLast()).label;
if (opcode == JSR && !subroutineHeads.containsKey(ln)) {
subroutineHeads.put(ln, new BitSet());
}
}
use of jdk.internal.org.objectweb.asm.tree.JumpInsnNode in project jdk8u_jdk by JetBrains.
the class JSRInlinerAdapter method markSubroutineWalkDFS.
/**
* Performs a simple DFS of the instructions, assigning each to the
* subroutine <code>sub</code>. Starts from <code>index</code>. Invoked only
* by <code>markSubroutineWalk()</code>.
*
* @param sub
* the subroutine whose instructions must be computed.
* @param index
* an instruction of this subroutine.
* @param anyvisited
* indexes of the already visited instructions, i.e. marked as
* part of this subroutine or any previously computed subroutine.
*/
private void markSubroutineWalkDFS(final BitSet sub, int index, final BitSet anyvisited) {
while (true) {
AbstractInsnNode node = instructions.get(index);
// don't visit a node twice
if (sub.get(index)) {
return;
}
sub.set(index);
// check for those nodes already visited by another subroutine
if (anyvisited.get(index)) {
dualCitizens.set(index);
if (LOGGING) {
log("Instruction #" + index + " is dual citizen.");
}
}
anyvisited.set(index);
if (node.getType() == AbstractInsnNode.JUMP_INSN && node.getOpcode() != JSR) {
// we do not follow recursively called subroutines here; but any
// other sort of branch we do follow
JumpInsnNode jnode = (JumpInsnNode) node;
int destidx = instructions.indexOf(jnode.label);
markSubroutineWalkDFS(sub, destidx, anyvisited);
}
if (node.getType() == AbstractInsnNode.TABLESWITCH_INSN) {
TableSwitchInsnNode tsnode = (TableSwitchInsnNode) node;
int destidx = instructions.indexOf(tsnode.dflt);
markSubroutineWalkDFS(sub, destidx, anyvisited);
for (int i = tsnode.labels.size() - 1; i >= 0; --i) {
LabelNode l = tsnode.labels.get(i);
destidx = instructions.indexOf(l);
markSubroutineWalkDFS(sub, destidx, anyvisited);
}
}
if (node.getType() == AbstractInsnNode.LOOKUPSWITCH_INSN) {
LookupSwitchInsnNode lsnode = (LookupSwitchInsnNode) node;
int destidx = instructions.indexOf(lsnode.dflt);
markSubroutineWalkDFS(sub, destidx, anyvisited);
for (int i = lsnode.labels.size() - 1; i >= 0; --i) {
LabelNode l = lsnode.labels.get(i);
destidx = instructions.indexOf(l);
markSubroutineWalkDFS(sub, destidx, anyvisited);
}
}
// or not; if not, return.
switch(instructions.get(index).getOpcode()) {
case GOTO:
case RET:
case TABLESWITCH:
case LOOKUPSWITCH:
case IRETURN:
case LRETURN:
case FRETURN:
case DRETURN:
case ARETURN:
case RETURN:
case ATHROW:
/*
* note: this either returns from this subroutine, or a parent
* subroutine which invoked it
*/
return;
}
// Use tail recursion here in the form of an outer while loop to
// avoid our stack growing needlessly:
index++;
// but this is more complicated).
if (index >= instructions.size()) {
return;
}
}
}
Aggregations