use of net.sf.mzmine.datamodel.impl.SimplePeakListRow in project mzmine2 by mzmine.
the class GnpsFbmnMgfExportTask method copyPeakRow.
/**
* Create a copy of a feature list row.
*/
private static PeakListRow copyPeakRow(final PeakListRow row) {
// Copy the feature list row.
final PeakListRow newRow = new SimplePeakListRow(row.getID());
PeakUtils.copyPeakListRowProperties(row, newRow);
// Copy the peaks.
for (final Feature peak : row.getPeaks()) {
final Feature newPeak = new SimpleFeature(peak);
PeakUtils.copyPeakProperties(peak, newPeak);
newRow.addPeak(peak.getDataFile(), newPeak);
}
return newRow;
}
use of net.sf.mzmine.datamodel.impl.SimplePeakListRow in project mzmine2 by mzmine.
the class HierarAlignerGCTask method run.
/**
* @see Runnable#run()
*/
public void run() {
// Check options validity
if ((Math.abs(mzWeight) < EPSILON) && (Math.abs(rtWeight) < EPSILON)) {
setStatus(TaskStatus.ERROR);
setErrorMessage("Cannot run alignment, all the weight parameters are zero!");
return;
}
setStatus(TaskStatus.PROCESSING);
logger.info("Running join aligner");
// TIME STUFF
long startTime, endTime;
float ms;
//
if (DEBUG)
startTime = System.currentTimeMillis();
// MEMORY STUFF
Runtime run_time = Runtime.getRuntime();
Long prevTotal = 0l;
Long prevFree = run_time.freeMemory();
if (DEBUG)
printMemoryUsage(logger, run_time, prevTotal, prevFree, "START TASK...");
// - third for actual alignment
for (int i = 0; i < peakLists.length; i++) {
totalRows += peakLists[i].getNumberOfRows() * 3;
}
// Collect all data files
Vector<RawDataFile> allDataFiles = new Vector<RawDataFile>();
for (PeakList peakList : peakLists) {
for (RawDataFile dataFile : peakList.getRawDataFiles()) {
// Each data file can only have one column in aligned feature list
if (allDataFiles.contains(dataFile)) {
setStatus(TaskStatus.ERROR);
setErrorMessage("Cannot run alignment, because file " + dataFile + " is present in multiple feature lists");
return;
}
allDataFiles.add(dataFile);
}
}
// Create a new aligned feature list
alignedPeakList = new SimplePeakList(peakListName, allDataFiles.toArray(new RawDataFile[0]));
if (DEBUG)
printMemoryUsage(logger, run_time, prevTotal, prevFree, "COMPOUND DETECTED");
/**
* Alignment mapping *
*/
// Iterate source feature lists
Hashtable<SimpleFeature, Double> rtPeaksBackup = new Hashtable<SimpleFeature, Double>();
Hashtable<PeakListRow, Object[]> infoRowsBackup = new Hashtable<PeakListRow, Object[]>();
// Since clustering is now order independent, option removed!
// Build comparison order
ArrayList<Integer> orderIds = new ArrayList<Integer>();
for (int i = 0; i < peakLists.length; ++i) {
orderIds.add(i);
}
Integer[] newIds = orderIds.toArray(new Integer[orderIds.size()]);
//
// TriangularMatrix distances = null;
DistanceMatrix distancesGNF_Tri = null;
DistanceMatrix distancesGNF_Tri_Bkp = null;
int nbPeaks = 0;
for (int i = 0; i < newIds.length; ++i) {
PeakList peakList = peakLists[newIds[i]];
nbPeaks += peakList.getNumberOfRows();
}
// If 'Hybrid' or no distance matrix: no need for a matrix
if (CLUSTERER_TYPE == ClustererType.HYBRID || !saveRAMratherThanCPU_1) {
// distances = new double[nbPeaks][nbPeaks];
int nRowCount = nbPeaks;
distancesGNF_Tri = new DistanceMatrixTriangular1D2D(nRowCount);
}
full_rows_list = new ArrayList<>();
for (int i = 0; i < newIds.length; ++i) {
PeakList peakList = peakLists[newIds[i]];
PeakListRow[] allRows = peakList.getRows();
for (int j = 0; j < allRows.length; ++j) {
PeakListRow row = allRows[j];
full_rows_list.add(row);
}
}
RowVsRowDistanceProvider distProvider = new RowVsRowDistanceProvider(project, // rtAdjustementMapping,
full_rows_list, mzWeight, rtWeight, // rtToleranceAfter,
maximumScore);
// If 'Hybrid' or no distance matrix: no need for a matrix
if (CLUSTERER_TYPE == ClustererType.HYBRID || !saveRAMratherThanCPU_1) {
for (int x = 0; x < nbPeaks; ++x) {
for (int y = x; y < nbPeaks; ++y) {
float dist = (float) distProvider.getRankedDistance(x, y, mzTolerance.getMzTolerance(), rtTolerance.getTolerance(), minScore);
// if (CLUSTERER_TYPE == ClustererType.CLASSIC_OLD)
// distances.set(x, y , dist);
// else
distancesGNF_Tri.setValue(x, y, dist);
}
processedRows++;
if (DEBUG)
logger.info("Treating lists: " + (Math.round(100 * processedRows / (double) nbPeaks)) + " %");
}
}
if (DEBUG)
printMemoryUsage(logger, run_time, prevTotal, prevFree, "DISTANCES COMPUTED");
// ////
// Math.abs(row.getBestPeak().getRT() -
double max_dist = maximumScore;
// k_row.getBestPeak().getRT()) /
// ((RangeUtils.rangeLength(rtRange) /
// 2.0));
// String newickCluster;
List<List<Integer>> gnfClusters = null;
// ////
boolean do_verbose = true;
boolean do_cluster = true;
boolean do_print = (exportDendrogramAsTxt);
boolean do_data = false;
org.gnf.clustering.Node[] arNodes = null;
int nRowCount = full_rows_list.size();
String[] rowNames = null;
if (do_print) {
rowNames = new String[nRowCount];
for (int i = 0; i < nRowCount; i++) {
// rowNames[i] = "ID_" + i + "_" +
// full_rows_list.get(i).getID();
Feature peak = full_rows_list.get(i).getBestPeak();
double rt = peak.getRT();
int end = peak.getDataFile().getName().indexOf(" ");
String short_fname = peak.getDataFile().getName().substring(0, end);
rowNames[i] = "@" + rtFormat.format(rt) + "^[" + short_fname + "]";
}
}
String outputPrefix = null;
if (CLUSTERER_TYPE == ClustererType.CLASSIC) {
// Pure Hierar!
outputPrefix = "hierar_0";
throw new IllegalStateException("'" + ClustererType.CLASSIC.toString() + "' algorithm not yet implemented!");
} else if (CLUSTERER_TYPE == ClustererType.CACHED) {
// TODO: ...!
if (DEBUG_2)
logger.info(distancesGNF_Tri.toString());
if (saveRAMratherThanCPU_2) {
// Requires: distances values will be
// recomputed on demand during
// "getValidatedClusters_3()"
// No duplicate backup storage!
distancesGNF_Tri_Bkp = null;
} else {
// Otherwise, backing up the distance matrix (matrix being
// deeply changed during "clusterDM()", then no more
// exploitable)
distancesGNF_Tri_Bkp = new DistanceMatrixTriangular1D2D(distancesGNF_Tri);
if (DEBUG)
printMemoryUsage(logger, run_time, prevTotal, prevFree, "GNF CLUSTERER BACKUP MATRIX");
}
if (DEBUG)
logger.info("Clustering...");
if (distancesGNF_Tri != null)
arNodes = org.gnf.clustering.sequentialcache.SequentialCacheClustering.clusterDM(distancesGNF_Tri, linkageStartegyType, null, nRowCount);
distancesGNF_Tri = null;
System.gc();
if (DEBUG)
printMemoryUsage(logger, run_time, prevTotal, prevFree, "GNF CLUSTERER DONE");
if (DEBUG_2)
logger.info(distancesGNF_Tri.toString());
if (DEBUG_2)
for (int i = 0; i < arNodes.length; i++) {
logger.info("Node " + i + ": " + arNodes[i]);
}
// TODO: Use usual interfacing ...
// ClusteringResult<org.gnf.clustering.Node> clust_res = new
// ClusteringResult<>(
// Arrays.asList(arNodes), null, 0, null);
outputPrefix = "hierar_1";
} else if (CLUSTERER_TYPE == ClustererType.HYBRID) {
throw new IllegalStateException("'" + ClustererType.HYBRID.toString() + "' algorithm not yet implemented!");
}
// Sort Nodes by correlation score (Required in
// 'getValidatedClusters_3')
int[] rowOrder = new int[nRowCount];
if (DEBUG)
logger.info("Sorting tree nodes...");
org.gnf.clustering.Utils.NodeSort(arNodes, nRowCount - 2, 0, rowOrder);
if (do_cluster) {
gnfClusters = getValidatedClusters_3(arNodes, 0.0f, newIds.length, max_dist, distancesGNF_Tri_Bkp, distProvider);
// -- Print
if (DEBUG_2 && do_verbose)
for (int i = 0; i < gnfClusters.size(); i++) {
List<Integer> cl = gnfClusters.get(i);
String str = "";
for (int j = 0; j < cl.size(); j++) {
int r = cl.get(j);
str += cl.get(j) + "^(" + full_rows_list.get(r).getID() + ", " + full_rows_list.get(r).getAverageRT() + ")" + " ";
}
logger.info(str);
}
}
// File output
int ext_pos = dendrogramTxtFilename.getAbsolutePath().lastIndexOf(".");
outputPrefix = dendrogramTxtFilename.getAbsolutePath().substring(0, ext_pos);
String outGtr = outputPrefix + ".gtr";
String outCdt = outputPrefix + ".cdt";
if (DEBUG)
logger.info("Writing output to file...");
int nColCount = 1;
String[] colNames = new String[nColCount];
colNames[nColCount - 1] = "Id";
String sep = "\t";
if (do_print) {
try {
float[] arFloats = new float[nRowCount];
for (int i = 0; i < arFloats.length; i++) {
arFloats[i] = i / 2.0f;
}
DataSource source = (do_data) ? new FloatSource1D(arFloats, nRowCount, nColCount) : null;
/* org.gnf.clustering.Utils. */
HierarAlignerGCTask.GenerateCDT(outCdt, source, /* null */
nRowCount, nColCount, sep, rowNames, colNames, rowOrder);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
org.gnf.clustering.Utils.WriteTreeToFile(outGtr, nRowCount - 1, arNodes, true);
if (DEBUG)
printMemoryUsage(logger, run_time, prevTotal, prevFree, "GNF CLUSTERER FILES PRINTED");
}
// //// Arrange row clustered list with method 0,1,2
List<List<PeakListRow>> clustersList = new ArrayList<>();
// Build feature list row clusters
for (List<Integer> cl : gnfClusters) {
List<PeakListRow> rows_cluster = new ArrayList<>();
for (int i = 0; i < cl.size(); i++) {
rows_cluster.add(full_rows_list.get(cl.get(i)));
}
clustersList.add(rows_cluster);
//
processedRows += rows_cluster.size();
}
if (DEBUG)
printMemoryUsage(logger, run_time, prevTotal, prevFree, "GNF CLUSTERER CLUSTER_LIST");
// Fill alignment table: One row per cluster
for (List<PeakListRow> cluster : clustersList) {
if (isCanceled())
return;
PeakListRow targetRow = new SimplePeakListRow(newRowID);
newRowID++;
alignedPeakList.addRow(targetRow);
//
infoRowsBackup.put(targetRow, new Object[] { new HashMap<RawDataFile, Double[]>(), new HashMap<RawDataFile, PeakIdentity>(), new HashMap<RawDataFile, Double>() });
for (PeakListRow row : cluster) {
// Add all non-existing identities from the original row to the
// aligned row
// Set the preferred identity
targetRow.setPreferredPeakIdentity(row.getPreferredPeakIdentity());
// for (RawDataFile file : row.getRawDataFiles()) {
for (RawDataFile file : alignedPeakList.getRawDataFiles()) {
if (Arrays.asList(row.getRawDataFiles()).contains(file)) {
Feature originalPeak = row.getPeak(file);
if (originalPeak != null) {
targetRow.addPeak(file, originalPeak);
} else {
setStatus(TaskStatus.ERROR);
setErrorMessage("Cannot run alignment, no originalPeak");
return;
}
}
}
// present
for (PeakIdentity identity : row.getPeakIdentities()) {
PeakIdentity clonedIdentity = (PeakIdentity) identity.clone();
if (!PeakUtils.containsIdentity(targetRow, clonedIdentity))
targetRow.addPeakIdentity(clonedIdentity, false);
}
// processedRows++;
}
}
// of the "targetRow.update()" used down there
for (SimpleFeature peak : rtPeaksBackup.keySet()) {
peak.setRT((double) rtPeaksBackup.get(peak));
}
/**
* Post-processing... *
*/
// Build reference RDFs index: We need an ordered reference here, to be
// able to parse
// correctly while reading back stored info
RawDataFile[] rdf_sorted = alignedPeakList.getRawDataFiles().clone();
Arrays.sort(rdf_sorted, new RawDataFileSorter(SortingDirection.Ascending));
// Process
for (PeakListRow targetRow : infoRowsBackup.keySet()) {
if (isCanceled())
return;
// Refresh averaged RTs...
((SimplePeakListRow) targetRow).update();
}
//
if (DEBUG) {
endTime = System.currentTimeMillis();
ms = (endTime - startTime);
logger.info("## >> Whole JoinAlignerGCTask processing took " + Float.toString(ms) + " ms.");
}
// ----------------------------------------------------------------------
// Add new aligned feature list to the project
this.project.addPeakList(alignedPeakList);
if (DEBUG) {
for (RawDataFile rdf : alignedPeakList.getRawDataFiles()) logger.info("RDF: " + rdf);
}
// Add task description to peakList
alignedPeakList.addDescriptionOfAppliedTask(new SimplePeakListAppliedMethod(HierarAlignerGCTask.TASK_NAME, parameters));
logger.info("Finished join aligner GC");
setStatus(TaskStatus.FINISHED);
}
use of net.sf.mzmine.datamodel.impl.SimplePeakListRow in project mzmine2 by mzmine.
the class JoinAlignerTask method run.
/**
* @see Runnable#run()
*/
@Override
public void run() {
if ((mzWeight == 0) && (rtWeight == 0)) {
setStatus(TaskStatus.ERROR);
setErrorMessage("Cannot run alignment, all the weight parameters are zero");
return;
}
setStatus(TaskStatus.PROCESSING);
logger.info("Running join aligner");
// twice, first for score calculation, second for actual alignment.
for (int i = 0; i < peakLists.length; i++) {
totalRows += peakLists[i].getNumberOfRows() * 2;
}
// Collect all data files
Vector<RawDataFile> allDataFiles = new Vector<RawDataFile>();
for (PeakList peakList : peakLists) {
for (RawDataFile dataFile : peakList.getRawDataFiles()) {
// Each data file can only have one column in aligned feature list
if (allDataFiles.contains(dataFile)) {
setStatus(TaskStatus.ERROR);
setErrorMessage("Cannot run alignment, because file " + dataFile + " is present in multiple feature lists");
return;
}
allDataFiles.add(dataFile);
}
}
// Create a new aligned feature list
alignedPeakList = new SimplePeakList(peakListName, allDataFiles.toArray(new RawDataFile[0]));
// Iterate source feature lists
for (PeakList peakList : peakLists) {
// Create a sorted set of scores matching
TreeSet<RowVsRowScore> scoreSet = new TreeSet<RowVsRowScore>();
PeakListRow[] allRows = peakList.getRows();
// Calculate scores for all possible alignments of this row
for (PeakListRow row : allRows) {
if (isCanceled())
return;
// Calculate limits for a row with which the row can be aligned
Range<Double> mzRange = mzTolerance.getToleranceRange(row.getAverageMZ());
Range<Double> rtRange = rtTolerance.getToleranceRange(row.getAverageRT());
// Get all rows of the aligned peaklist within parameter limits
PeakListRow[] candidateRows = alignedPeakList.getRowsInsideScanAndMZRange(rtRange, mzRange);
// Calculate scores and store them
for (PeakListRow candidate : candidateRows) {
if (sameChargeRequired) {
if (!PeakUtils.compareChargeState(row, candidate))
continue;
}
if (sameIDRequired) {
if (!PeakUtils.compareIdentities(row, candidate))
continue;
}
if (compareIsotopePattern) {
IsotopePattern ip1 = row.getBestIsotopePattern();
IsotopePattern ip2 = candidate.getBestIsotopePattern();
if ((ip1 != null) && (ip2 != null)) {
ParameterSet isotopeParams = parameters.getParameter(JoinAlignerParameters.compareIsotopePattern).getEmbeddedParameters();
if (!IsotopePatternScoreCalculator.checkMatch(ip1, ip2, isotopeParams)) {
continue;
}
}
}
// compare the similarity of spectra mass lists on MS1 or MS2 level
if (compareSpectraSimilarity) {
DataPoint[] rowDPs = null;
DataPoint[] candidateDPs = null;
SpectralSimilarity sim = null;
// get data points of mass list of the representative scans
if (msLevel == 1) {
rowDPs = row.getBestPeak().getRepresentativeScan().getMassList(massList).getDataPoints();
candidateDPs = candidate.getBestPeak().getRepresentativeScan().getMassList(massList).getDataPoints();
}
// get data points of mass list of the best fragmentation scans
if (msLevel == 2) {
if (row.getBestFragmentation() != null && candidate.getBestFragmentation() != null) {
rowDPs = row.getBestFragmentation().getMassList(massList).getDataPoints();
candidateDPs = candidate.getBestFragmentation().getMassList(massList).getDataPoints();
} else
continue;
}
// compare mass list data points of selected scans
if (rowDPs != null && candidateDPs != null) {
// calculate similarity using SimilarityFunction
sim = createSimilarity(rowDPs, candidateDPs);
// user set threshold
if (sim == null) {
continue;
}
}
}
RowVsRowScore score = new RowVsRowScore(row, candidate, RangeUtils.rangeLength(mzRange) / 2.0, mzWeight, RangeUtils.rangeLength(rtRange) / 2.0, rtWeight);
scoreSet.add(score);
}
processedRows++;
}
// Create a table of mappings for best scores
Hashtable<PeakListRow, PeakListRow> alignmentMapping = new Hashtable<PeakListRow, PeakListRow>();
// Iterate scores by descending order
Iterator<RowVsRowScore> scoreIterator = scoreSet.iterator();
while (scoreIterator.hasNext()) {
RowVsRowScore score = scoreIterator.next();
// Check if the row is already mapped
if (alignmentMapping.containsKey(score.getPeakListRow()))
continue;
// Check if the aligned row is already filled
if (alignmentMapping.containsValue(score.getAlignedRow()))
continue;
alignmentMapping.put(score.getPeakListRow(), score.getAlignedRow());
}
// Align all rows using mapping
for (PeakListRow row : allRows) {
PeakListRow targetRow = alignmentMapping.get(row);
// If we have no mapping for this row, add a new one
if (targetRow == null) {
targetRow = new SimplePeakListRow(newRowID);
newRowID++;
alignedPeakList.addRow(targetRow);
}
// Add all peaks from the original row to the aligned row
for (RawDataFile file : row.getRawDataFiles()) {
targetRow.addPeak(file, row.getPeak(file));
}
// Add all non-existing identities from the original row to the
// aligned row
PeakUtils.copyPeakListRowProperties(row, targetRow);
processedRows++;
}
}
// Next feature list
// Add new aligned feature list to the project
project.addPeakList(alignedPeakList);
// Add task description to peakList
alignedPeakList.addDescriptionOfAppliedTask(new SimplePeakListAppliedMethod("Join aligner", parameters));
logger.info("Finished join aligner");
setStatus(TaskStatus.FINISHED);
}
use of net.sf.mzmine.datamodel.impl.SimplePeakListRow in project mzmine2 by mzmine.
the class PeakLearnerTask method copyPeakRow.
/**
* Create a copy of a feature list row.
*
* @param row the row to copy.
* @return the newly created copy.
*/
private static PeakListRow copyPeakRow(final PeakListRow row) {
// Copy the feature list row.
final PeakListRow newRow = new SimplePeakListRow(row.getID());
PeakUtils.copyPeakListRowProperties(row, newRow);
// Copy the peaks.
for (final Feature peak : row.getPeaks()) {
final Feature newPeak = new SimpleFeature(peak);
PeakUtils.copyPeakProperties(peak, newPeak);
newRow.addPeak(peak.getDataFile(), newPeak);
}
return newRow;
}
use of net.sf.mzmine.datamodel.impl.SimplePeakListRow in project mzmine2 by mzmine.
the class ADAPChromatogramBuilderTask method run.
/**
* @see Runnable#run()
*/
public void run() {
boolean writeChromCDF = true;
setStatus(TaskStatus.PROCESSING);
logger.info("Started chromatogram builder on " + dataFile);
scans = scanSelection.getMatchingScans(dataFile);
int[] allScanNumbers = scanSelection.getMatchingScanNumbers(dataFile);
List<Double> rtListForChromCDF = new ArrayList<Double>();
// Check if the scans are properly ordered by RT
double prevRT = Double.NEGATIVE_INFINITY;
for (Scan s : scans) {
if (isCanceled()) {
return;
}
if (writeChromCDF) {
rtListForChromCDF.add(s.getRetentionTime());
}
if (s.getRetentionTime() < prevRT) {
setStatus(TaskStatus.ERROR);
final String msg = "Retention time of scan #" + s.getScanNumber() + " is smaller then the retention time of the previous scan." + " Please make sure you only use scans with increasing retention times." + " You can restrict the scan numbers in the parameters, or you can use the Crop filter module";
setErrorMessage(msg);
return;
}
prevRT = s.getRetentionTime();
}
// Check if the scans are MS1-only or MS2-only.
int minMsLevel = Arrays.stream(scans).mapToInt(Scan::getMSLevel).min().orElseThrow(() -> new IllegalStateException("Cannot find the minimum MS level"));
int maxMsLevel = Arrays.stream(scans).mapToInt(Scan::getMSLevel).max().orElseThrow(() -> new IllegalStateException("Cannot find the maximum MS level"));
if (minMsLevel != maxMsLevel) {
MZmineCore.getDesktop().displayMessage(null, "MZmine thinks that you are running ADAP Chromatogram builder on both MS1- and MS2-scans. " + "This will likely produce wrong results. " + "Please, set the scan filter parameter to a specific MS level");
}
// Create new feature list
newPeakList = new SimplePeakList(dataFile + " " + suffix, dataFile);
// make a list of all the data points
// sort data points by intensity
// loop through list
// add data point to chromatogrm or make new one
// update mz avg and other stuff
//
// make a list of all the data points
List<ExpandedDataPoint> allMzValues = new ArrayList<ExpandedDataPoint>();
for (Scan scan : scans) {
if (isCanceled())
return;
MassList massList = scan.getMassList(massListName);
if (massList == null) {
setStatus(TaskStatus.ERROR);
setErrorMessage("Scan " + dataFile + " #" + scan.getScanNumber() + " does not have a mass list " + massListName);
return;
}
DataPoint[] mzValues = massList.getDataPoints();
if (mzValues == null) {
setStatus(TaskStatus.ERROR);
setErrorMessage("Mass list " + massListName + " does not contain m/z values for scan #" + scan.getScanNumber() + " of file " + dataFile);
return;
}
for (DataPoint mzPeak : mzValues) {
ExpandedDataPoint curDatP = new ExpandedDataPoint(mzPeak, scan.getScanNumber());
allMzValues.add(curDatP);
// corespondingScanNum.add(scan.getScanNumber());
}
}
// Integer[] simpleCorespondingScanNums = new Integer[corespondingScanNum.size()];
// corespondingScanNum.toArray(simpleCorespondingScanNums );
ExpandedDataPoint[] simpleAllMzVals = new ExpandedDataPoint[allMzValues.size()];
allMzValues.toArray(simpleAllMzVals);
// sort data points by intensity
Arrays.sort(simpleAllMzVals, new DataPointSorter(SortingProperty.Intensity, SortingDirection.Descending));
// Exit if no peaks
if (simpleAllMzVals.length == 0) {
progress = 1.0;
setStatus(TaskStatus.FINISHED);
logger.info("Finished chromatogram builder with no peaks on " + dataFile);
return;
}
double maxIntensity = simpleAllMzVals[0].getIntensity();
// count starts at 1 since we already have added one with a single point.
// Stopwatch stopwatch = Stopwatch.createUnstarted();
// stopwatch2 = Stopwatch.createUnstarted();
// Stopwatch stopwatch3 = Stopwatch.createUnstarted();
progress = 0.0;
double progressStep = (simpleAllMzVals.length > 0) ? 0.5 / simpleAllMzVals.length : 0.0;
for (ExpandedDataPoint mzPeak : simpleAllMzVals) {
progress += progressStep;
if (isCanceled()) {
return;
}
if (mzPeak == null || Double.isNaN(mzPeak.getMZ()) || Double.isNaN(mzPeak.getIntensity())) {
continue;
}
// ////////////////////////////////////////////////
Range<Double> containsPointRange = rangeSet.rangeContaining(mzPeak.getMZ());
Range<Double> toleranceRange = mzTolerance.getToleranceRange(mzPeak.getMZ());
if (containsPointRange == null) {
// skip it entierly if the intensity is not high enough
if (mzPeak.getIntensity() < minIntensityForStartChrom) {
continue;
}
// look +- mz tolerance to see if ther is a range near by.
// If there is use the proper boundry of that range for the
// new range to insure than NON OF THE RANGES OVERLAP.
Range<Double> plusRange = rangeSet.rangeContaining(toleranceRange.upperEndpoint());
Range<Double> minusRange = rangeSet.rangeContaining(toleranceRange.lowerEndpoint());
Double toBeLowerBound;
Double toBeUpperBound;
double cur_max_testing_mz = mzPeak.getMZ();
// chromatogram so that none of the points are overlapping.
if ((plusRange == null) && (minusRange == null)) {
toBeLowerBound = toleranceRange.lowerEndpoint();
toBeUpperBound = toleranceRange.upperEndpoint();
} else if ((plusRange == null) && (minusRange != null)) {
// the upper end point of the minus range will be the lower
// range of the new one
toBeLowerBound = minusRange.upperEndpoint();
toBeUpperBound = toleranceRange.upperEndpoint();
} else if ((minusRange == null) && (plusRange != null)) {
toBeLowerBound = toleranceRange.lowerEndpoint();
toBeUpperBound = plusRange.lowerEndpoint();
// double tmp_this = plusRange.upperEndpoint();
// System.out.println("tmp_this");
} else if ((minusRange != null) && (plusRange != null)) {
toBeLowerBound = minusRange.upperEndpoint();
toBeUpperBound = plusRange.lowerEndpoint();
} else {
toBeLowerBound = 0.0;
toBeUpperBound = 0.0;
}
if (toBeLowerBound < toBeUpperBound) {
Range<Double> newRange = Range.open(toBeLowerBound, toBeUpperBound);
ADAPChromatogram newChrom = new ADAPChromatogram(dataFile, allScanNumbers);
newChrom.addMzPeak(mzPeak.getScanNumber(), mzPeak);
newChrom.setHighPointMZ(mzPeak.getMZ());
rangeToChromMap.put(newRange, newChrom);
// also need to put it in the set -> this is where the range can be efficiently found.
rangeSet.add(newRange);
} else if (toBeLowerBound.equals(toBeUpperBound) && plusRange != null) {
ADAPChromatogram curChrom = rangeToChromMap.get(plusRange);
curChrom.addMzPeak(mzPeak.getScanNumber(), mzPeak);
} else
throw new IllegalStateException(String.format("Incorrect range [%f, %f] for m/z %f", toBeLowerBound, toBeUpperBound, mzPeak.getMZ()));
} else {
// In this case we do not need to update the rangeSet
ADAPChromatogram curChrom = rangeToChromMap.get(containsPointRange);
curChrom.addMzPeak(mzPeak.getScanNumber(), mzPeak);
// update the entry in the map
rangeToChromMap.put(containsPointRange, curChrom);
}
}
// System.out.println("search chroms (ms): " + stopwatch.elapsed(TimeUnit.MILLISECONDS));
// System.out.println("making new chrom (ms): " + stopwatch2.elapsed(TimeUnit.MILLISECONDS));
// finish chromatograms
Set<Range<Double>> ranges = rangeSet.asRanges();
Iterator<Range<Double>> RangeIterator = ranges.iterator();
List<ADAPChromatogram> buildingChromatograms = new ArrayList<ADAPChromatogram>();
progressStep = (ranges.size() > 0) ? 0.5 / ranges.size() : 0.0;
while (RangeIterator.hasNext()) {
if (isCanceled()) {
return;
}
progress += progressStep;
Range<Double> curRangeKey = RangeIterator.next();
ADAPChromatogram chromatogram = rangeToChromMap.get(curRangeKey);
chromatogram.finishChromatogram();
// And remove chromatograms who dont have a certian number of continous points above the
// IntensityThresh2 level.
double numberOfContinuousPointsAboveNoise = chromatogram.findNumberOfContinuousPointsAboveNoise(IntensityThresh2);
if (numberOfContinuousPointsAboveNoise < minimumScanSpan) {
// requirements");
continue;
} else {
buildingChromatograms.add(chromatogram);
}
}
ADAPChromatogram[] chromatograms = buildingChromatograms.toArray(new ADAPChromatogram[0]);
// Sort the final chromatograms by m/z
Arrays.sort(chromatograms, new PeakSorter(SortingProperty.MZ, SortingDirection.Ascending));
// Add the chromatograms to the new feature list
for (Feature finishedPeak : chromatograms) {
SimplePeakListRow newRow = new SimplePeakListRow(newPeakID);
newPeakID++;
newRow.addPeak(dataFile, finishedPeak);
newPeakList.addRow(newRow);
// finishedPeak.outputChromToFile();
}
// Add new peaklist to the project
project.addPeakList(newPeakList);
// Add quality parameters to peaks
QualityParameters.calculateQualityParameters(newPeakList);
progress = 1.0;
setStatus(TaskStatus.FINISHED);
logger.info("Finished chromatogram builder on " + dataFile);
}
Aggregations