Search in sources :

Example 71 with ATN

use of org.antlr.v4.runtime.atn.ATN in project antlr4 by antlr.

the class ATNDeserializer method deserialize.

@SuppressWarnings("deprecation")
public ATN deserialize(char[] data) {
    data = data.clone();
    // was implemented.
    for (int i = 1; i < data.length; i++) {
        data[i] = (char) (data[i] - 2);
    }
    int p = 0;
    int version = toInt(data[p++]);
    if (version != SERIALIZED_VERSION) {
        String reason = String.format(Locale.getDefault(), "Could not deserialize ATN with version %d (expected %d).", version, SERIALIZED_VERSION);
        throw new UnsupportedOperationException(new InvalidClassException(ATN.class.getName(), reason));
    }
    UUID uuid = toUUID(data, p);
    p += 8;
    if (!SUPPORTED_UUIDS.contains(uuid)) {
        String reason = String.format(Locale.getDefault(), "Could not deserialize ATN with UUID %s (expected %s or a legacy UUID).", uuid, SERIALIZED_UUID);
        throw new UnsupportedOperationException(new InvalidClassException(ATN.class.getName(), reason));
    }
    boolean supportsPrecedencePredicates = isFeatureSupported(ADDED_PRECEDENCE_TRANSITIONS, uuid);
    boolean supportsLexerActions = isFeatureSupported(ADDED_LEXER_ACTIONS, uuid);
    ATNType grammarType = ATNType.values()[toInt(data[p++])];
    int maxTokenType = toInt(data[p++]);
    ATN atn = new ATN(grammarType, maxTokenType);
    //
    // STATES
    //
    List<Pair<LoopEndState, Integer>> loopBackStateNumbers = new ArrayList<Pair<LoopEndState, Integer>>();
    List<Pair<BlockStartState, Integer>> endStateNumbers = new ArrayList<Pair<BlockStartState, Integer>>();
    int nstates = toInt(data[p++]);
    for (int i = 0; i < nstates; i++) {
        int stype = toInt(data[p++]);
        // ignore bad type of states
        if (stype == ATNState.INVALID_TYPE) {
            atn.addState(null);
            continue;
        }
        int ruleIndex = toInt(data[p++]);
        if (ruleIndex == Character.MAX_VALUE) {
            ruleIndex = -1;
        }
        ATNState s = stateFactory(stype, ruleIndex);
        if (stype == ATNState.LOOP_END) {
            // special case
            int loopBackStateNumber = toInt(data[p++]);
            loopBackStateNumbers.add(new Pair<LoopEndState, Integer>((LoopEndState) s, loopBackStateNumber));
        } else if (s instanceof BlockStartState) {
            int endStateNumber = toInt(data[p++]);
            endStateNumbers.add(new Pair<BlockStartState, Integer>((BlockStartState) s, endStateNumber));
        }
        atn.addState(s);
    }
    // delay the assignment of loop back and end states until we know all the state instances have been initialized
    for (Pair<LoopEndState, Integer> pair : loopBackStateNumbers) {
        pair.a.loopBackState = atn.states.get(pair.b);
    }
    for (Pair<BlockStartState, Integer> pair : endStateNumbers) {
        pair.a.endState = (BlockEndState) atn.states.get(pair.b);
    }
    int numNonGreedyStates = toInt(data[p++]);
    for (int i = 0; i < numNonGreedyStates; i++) {
        int stateNumber = toInt(data[p++]);
        ((DecisionState) atn.states.get(stateNumber)).nonGreedy = true;
    }
    if (supportsPrecedencePredicates) {
        int numPrecedenceStates = toInt(data[p++]);
        for (int i = 0; i < numPrecedenceStates; i++) {
            int stateNumber = toInt(data[p++]);
            ((RuleStartState) atn.states.get(stateNumber)).isLeftRecursiveRule = true;
        }
    }
    //
    // RULES
    //
    int nrules = toInt(data[p++]);
    if (atn.grammarType == ATNType.LEXER) {
        atn.ruleToTokenType = new int[nrules];
    }
    atn.ruleToStartState = new RuleStartState[nrules];
    for (int i = 0; i < nrules; i++) {
        int s = toInt(data[p++]);
        RuleStartState startState = (RuleStartState) atn.states.get(s);
        atn.ruleToStartState[i] = startState;
        if (atn.grammarType == ATNType.LEXER) {
            int tokenType = toInt(data[p++]);
            if (tokenType == 0xFFFF) {
                tokenType = Token.EOF;
            }
            atn.ruleToTokenType[i] = tokenType;
            if (!isFeatureSupported(ADDED_LEXER_ACTIONS, uuid)) {
                // this piece of unused metadata was serialized prior to the
                // addition of LexerAction
                int actionIndexIgnored = toInt(data[p++]);
            }
        }
    }
    atn.ruleToStopState = new RuleStopState[nrules];
    for (ATNState state : atn.states) {
        if (!(state instanceof RuleStopState)) {
            continue;
        }
        RuleStopState stopState = (RuleStopState) state;
        atn.ruleToStopState[state.ruleIndex] = stopState;
        atn.ruleToStartState[state.ruleIndex].stopState = stopState;
    }
    //
    // MODES
    //
    int nmodes = toInt(data[p++]);
    for (int i = 0; i < nmodes; i++) {
        int s = toInt(data[p++]);
        atn.modeToStartState.add((TokensStartState) atn.states.get(s));
    }
    //
    // SETS
    //
    List<IntervalSet> sets = new ArrayList<IntervalSet>();
    // First, read all sets with 16-bit Unicode code points <= U+FFFF.
    p = deserializeSets(data, p, sets, getUnicodeDeserializer(UnicodeDeserializingMode.UNICODE_BMP));
    // deserialize sets with 32-bit arguments <= U+10FFFF.
    if (isFeatureSupported(ADDED_UNICODE_SMP, uuid)) {
        p = deserializeSets(data, p, sets, getUnicodeDeserializer(UnicodeDeserializingMode.UNICODE_SMP));
    }
    //
    // EDGES
    //
    int nedges = toInt(data[p++]);
    for (int i = 0; i < nedges; i++) {
        int src = toInt(data[p]);
        int trg = toInt(data[p + 1]);
        int ttype = toInt(data[p + 2]);
        int arg1 = toInt(data[p + 3]);
        int arg2 = toInt(data[p + 4]);
        int arg3 = toInt(data[p + 5]);
        Transition trans = edgeFactory(atn, ttype, src, trg, arg1, arg2, arg3, sets);
        //			System.out.println("EDGE "+trans.getClass().getSimpleName()+" "+
        //							   src+"->"+trg+
        //					   " "+Transition.serializationNames[ttype]+
        //					   " "+arg1+","+arg2+","+arg3);
        ATNState srcState = atn.states.get(src);
        srcState.addTransition(trans);
        p += 6;
    }
    // edges for rule stop states can be derived, so they aren't serialized
    for (ATNState state : atn.states) {
        for (int i = 0; i < state.getNumberOfTransitions(); i++) {
            Transition t = state.transition(i);
            if (!(t instanceof RuleTransition)) {
                continue;
            }
            RuleTransition ruleTransition = (RuleTransition) t;
            int outermostPrecedenceReturn = -1;
            if (atn.ruleToStartState[ruleTransition.target.ruleIndex].isLeftRecursiveRule) {
                if (ruleTransition.precedence == 0) {
                    outermostPrecedenceReturn = ruleTransition.target.ruleIndex;
                }
            }
            EpsilonTransition returnTransition = new EpsilonTransition(ruleTransition.followState, outermostPrecedenceReturn);
            atn.ruleToStopState[ruleTransition.target.ruleIndex].addTransition(returnTransition);
        }
    }
    for (ATNState state : atn.states) {
        if (state instanceof BlockStartState) {
            // we need to know the end state to set its start state
            if (((BlockStartState) state).endState == null) {
                throw new IllegalStateException();
            }
            // block end states can only be associated to a single block start state
            if (((BlockStartState) state).endState.startState != null) {
                throw new IllegalStateException();
            }
            ((BlockStartState) state).endState.startState = (BlockStartState) state;
        }
        if (state instanceof PlusLoopbackState) {
            PlusLoopbackState loopbackState = (PlusLoopbackState) state;
            for (int i = 0; i < loopbackState.getNumberOfTransitions(); i++) {
                ATNState target = loopbackState.transition(i).target;
                if (target instanceof PlusBlockStartState) {
                    ((PlusBlockStartState) target).loopBackState = loopbackState;
                }
            }
        } else if (state instanceof StarLoopbackState) {
            StarLoopbackState loopbackState = (StarLoopbackState) state;
            for (int i = 0; i < loopbackState.getNumberOfTransitions(); i++) {
                ATNState target = loopbackState.transition(i).target;
                if (target instanceof StarLoopEntryState) {
                    ((StarLoopEntryState) target).loopBackState = loopbackState;
                }
            }
        }
    }
    //
    // DECISIONS
    //
    int ndecisions = toInt(data[p++]);
    for (int i = 1; i <= ndecisions; i++) {
        int s = toInt(data[p++]);
        DecisionState decState = (DecisionState) atn.states.get(s);
        atn.decisionToState.add(decState);
        decState.decision = i - 1;
    }
    //
    if (atn.grammarType == ATNType.LEXER) {
        if (supportsLexerActions) {
            atn.lexerActions = new LexerAction[toInt(data[p++])];
            for (int i = 0; i < atn.lexerActions.length; i++) {
                LexerActionType actionType = LexerActionType.values()[toInt(data[p++])];
                int data1 = toInt(data[p++]);
                if (data1 == 0xFFFF) {
                    data1 = -1;
                }
                int data2 = toInt(data[p++]);
                if (data2 == 0xFFFF) {
                    data2 = -1;
                }
                LexerAction lexerAction = lexerActionFactory(actionType, data1, data2);
                atn.lexerActions[i] = lexerAction;
            }
        } else {
            // for compatibility with older serialized ATNs, convert the old
            // serialized action index for action transitions to the new
            // form, which is the index of a LexerCustomAction
            List<LexerAction> legacyLexerActions = new ArrayList<LexerAction>();
            for (ATNState state : atn.states) {
                for (int i = 0; i < state.getNumberOfTransitions(); i++) {
                    Transition transition = state.transition(i);
                    if (!(transition instanceof ActionTransition)) {
                        continue;
                    }
                    int ruleIndex = ((ActionTransition) transition).ruleIndex;
                    int actionIndex = ((ActionTransition) transition).actionIndex;
                    LexerCustomAction lexerAction = new LexerCustomAction(ruleIndex, actionIndex);
                    state.setTransition(i, new ActionTransition(transition.target, ruleIndex, legacyLexerActions.size(), false));
                    legacyLexerActions.add(lexerAction);
                }
            }
            atn.lexerActions = legacyLexerActions.toArray(new LexerAction[legacyLexerActions.size()]);
        }
    }
    markPrecedenceDecisions(atn);
    if (deserializationOptions.isVerifyATN()) {
        verifyATN(atn);
    }
    if (deserializationOptions.isGenerateRuleBypassTransitions() && atn.grammarType == ATNType.PARSER) {
        atn.ruleToTokenType = new int[atn.ruleToStartState.length];
        for (int i = 0; i < atn.ruleToStartState.length; i++) {
            atn.ruleToTokenType[i] = atn.maxTokenType + i + 1;
        }
        for (int i = 0; i < atn.ruleToStartState.length; i++) {
            BasicBlockStartState bypassStart = new BasicBlockStartState();
            bypassStart.ruleIndex = i;
            atn.addState(bypassStart);
            BlockEndState bypassStop = new BlockEndState();
            bypassStop.ruleIndex = i;
            atn.addState(bypassStop);
            bypassStart.endState = bypassStop;
            atn.defineDecisionState(bypassStart);
            bypassStop.startState = bypassStart;
            ATNState endState;
            Transition excludeTransition = null;
            if (atn.ruleToStartState[i].isLeftRecursiveRule) {
                // wrap from the beginning of the rule to the StarLoopEntryState
                endState = null;
                for (ATNState state : atn.states) {
                    if (state.ruleIndex != i) {
                        continue;
                    }
                    if (!(state instanceof StarLoopEntryState)) {
                        continue;
                    }
                    ATNState maybeLoopEndState = state.transition(state.getNumberOfTransitions() - 1).target;
                    if (!(maybeLoopEndState instanceof LoopEndState)) {
                        continue;
                    }
                    if (maybeLoopEndState.epsilonOnlyTransitions && maybeLoopEndState.transition(0).target instanceof RuleStopState) {
                        endState = state;
                        break;
                    }
                }
                if (endState == null) {
                    throw new UnsupportedOperationException("Couldn't identify final state of the precedence rule prefix section.");
                }
                excludeTransition = ((StarLoopEntryState) endState).loopBackState.transition(0);
            } else {
                endState = atn.ruleToStopState[i];
            }
            // all non-excluded transitions that currently target end state need to target blockEnd instead
            for (ATNState state : atn.states) {
                for (Transition transition : state.transitions) {
                    if (transition == excludeTransition) {
                        continue;
                    }
                    if (transition.target == endState) {
                        transition.target = bypassStop;
                    }
                }
            }
            // all transitions leaving the rule start state need to leave blockStart instead
            while (atn.ruleToStartState[i].getNumberOfTransitions() > 0) {
                Transition transition = atn.ruleToStartState[i].removeTransition(atn.ruleToStartState[i].getNumberOfTransitions() - 1);
                bypassStart.addTransition(transition);
            }
            // link the new states
            atn.ruleToStartState[i].addTransition(new EpsilonTransition(bypassStart));
            bypassStop.addTransition(new EpsilonTransition(endState));
            ATNState matchState = new BasicState();
            atn.addState(matchState);
            matchState.addTransition(new AtomTransition(bypassStop, atn.ruleToTokenType[i]));
            bypassStart.addTransition(new EpsilonTransition(matchState));
        }
        if (deserializationOptions.isVerifyATN()) {
            // reverify after modification
            verifyATN(atn);
        }
    }
    return atn;
}
Also used : ArrayList(java.util.ArrayList) UUID(java.util.UUID) Pair(org.antlr.v4.runtime.misc.Pair) InvalidClassException(java.io.InvalidClassException) IntervalSet(org.antlr.v4.runtime.misc.IntervalSet)

Example 72 with ATN

use of org.antlr.v4.runtime.atn.ATN in project antlr4 by antlr.

the class ATNSerializer method getDecoded.

public static String getDecoded(ATN atn, List<String> tokenNames) {
    IntegerList serialized = getSerialized(atn);
    char[] data = Utils.toCharArray(serialized);
    return new ATNSerializer(atn, tokenNames).decode(data);
}
Also used : IntegerList(org.antlr.v4.runtime.misc.IntegerList)

Example 73 with ATN

use of org.antlr.v4.runtime.atn.ATN in project antlr4 by antlr.

the class DefaultErrorStrategy method singleTokenInsertion.

/**
	 * This method implements the single-token insertion inline error recovery
	 * strategy. It is called by {@link #recoverInline} if the single-token
	 * deletion strategy fails to recover from the mismatched input. If this
	 * method returns {@code true}, {@code recognizer} will be in error recovery
	 * mode.
	 *
	 * <p>This method determines whether or not single-token insertion is viable by
	 * checking if the {@code LA(1)} input symbol could be successfully matched
	 * if it were instead the {@code LA(2)} symbol. If this method returns
	 * {@code true}, the caller is responsible for creating and inserting a
	 * token with the correct type to produce this behavior.</p>
	 *
	 * @param recognizer the parser instance
	 * @return {@code true} if single-token insertion is a viable recovery
	 * strategy for the current mismatched input, otherwise {@code false}
	 */
protected boolean singleTokenInsertion(Parser recognizer) {
    int currentSymbolType = recognizer.getInputStream().LA(1);
    // if current token is consistent with what could come after current
    // ATN state, then we know we're missing a token; error recovery
    // is free to conjure up and insert the missing token
    ATNState currentState = recognizer.getInterpreter().atn.states.get(recognizer.getState());
    ATNState next = currentState.transition(0).target;
    ATN atn = recognizer.getInterpreter().atn;
    IntervalSet expectingAtLL2 = atn.nextTokens(next, recognizer._ctx);
    //		System.out.println("LT(2) set="+expectingAtLL2.toString(recognizer.getTokenNames()));
    if (expectingAtLL2.contains(currentSymbolType)) {
        reportMissingToken(recognizer);
        return true;
    }
    return false;
}
Also used : IntervalSet(org.antlr.v4.runtime.misc.IntervalSet) ATN(org.antlr.v4.runtime.atn.ATN) ATNState(org.antlr.v4.runtime.atn.ATNState)

Example 74 with ATN

use of org.antlr.v4.runtime.atn.ATN in project antlr4 by antlr.

the class Parser method getExpectedTokensWithinCurrentRule.

public IntervalSet getExpectedTokensWithinCurrentRule() {
    ATN atn = getInterpreter().atn;
    ATNState s = atn.states.get(getState());
    return atn.nextTokens(s);
}
Also used : ATN(org.antlr.v4.runtime.atn.ATN) ATNState(org.antlr.v4.runtime.atn.ATNState)

Example 75 with ATN

use of org.antlr.v4.runtime.atn.ATN in project antlr4 by antlr.

the class ParserATNSimulator method execATNWithFullContext.

// comes back with reach.uniqueAlt set to a valid alt
protected int execATNWithFullContext(DFA dfa, // how far we got in SLL DFA before failing over
DFAState D, ATNConfigSet s0, TokenStream input, int startIndex, ParserRuleContext outerContext) {
    if (debug || debug_list_atn_decisions) {
        System.out.println("execATNWithFullContext " + s0);
    }
    boolean fullCtx = true;
    boolean foundExactAmbig = false;
    ATNConfigSet reach = null;
    ATNConfigSet previous = s0;
    input.seek(startIndex);
    int t = input.LA(1);
    int predictedAlt;
    while (true) {
        // while more work
        //			System.out.println("LL REACH "+getLookaheadName(input)+
        //							   " from configs.size="+previous.size()+
        //							   " line "+input.LT(1).getLine()+":"+input.LT(1).getCharPositionInLine());
        reach = computeReachSet(previous, t, fullCtx);
        if (reach == null) {
            // if any configs in previous dipped into outer context, that
            // means that input up to t actually finished entry rule
            // at least for LL decision. Full LL doesn't dip into outer
            // so don't need special case.
            // We will get an error no matter what so delay until after
            // decision; better error message. Also, no reachable target
            // ATN states in SLL implies LL will also get nowhere.
            // If conflict in states that dip out, choose min since we
            // will get error no matter what.
            NoViableAltException e = noViableAlt(input, outerContext, previous, startIndex);
            input.seek(startIndex);
            int alt = getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(previous, outerContext);
            if (alt != ATN.INVALID_ALT_NUMBER) {
                return alt;
            }
            throw e;
        }
        Collection<BitSet> altSubSets = PredictionMode.getConflictingAltSubsets(reach);
        if (debug) {
            System.out.println("LL altSubSets=" + altSubSets + ", predict=" + PredictionMode.getUniqueAlt(altSubSets) + ", resolvesToJustOneViableAlt=" + PredictionMode.resolvesToJustOneViableAlt(altSubSets));
        }
        //			System.out.println("altSubSets: "+altSubSets);
        //			System.err.println("reach="+reach+", "+reach.conflictingAlts);
        reach.uniqueAlt = getUniqueAlt(reach);
        // unique prediction?
        if (reach.uniqueAlt != ATN.INVALID_ALT_NUMBER) {
            predictedAlt = reach.uniqueAlt;
            break;
        }
        if (mode != PredictionMode.LL_EXACT_AMBIG_DETECTION) {
            predictedAlt = PredictionMode.resolvesToJustOneViableAlt(altSubSets);
            if (predictedAlt != ATN.INVALID_ALT_NUMBER) {
                break;
            }
        } else {
            // Just keeps scarfing until we know what the conflict is
            if (PredictionMode.allSubsetsConflict(altSubSets) && PredictionMode.allSubsetsEqual(altSubSets)) {
                foundExactAmbig = true;
                predictedAlt = PredictionMode.getSingleViableAlt(altSubSets);
                break;
            }
        // else there are multiple non-conflicting subsets or
        // we're not sure what the ambiguity is yet.
        // So, keep going.
        }
        previous = reach;
        if (t != IntStream.EOF) {
            input.consume();
            t = input.LA(1);
        }
    }
    // not SLL.
    if (reach.uniqueAlt != ATN.INVALID_ALT_NUMBER) {
        reportContextSensitivity(dfa, predictedAlt, reach, startIndex, input.index());
        return predictedAlt;
    }
    // We do not check predicates here because we have checked them
    // on-the-fly when doing full context prediction.
    /*
		In non-exact ambiguity detection mode, we might	actually be able to
		detect an exact ambiguity, but I'm not going to spend the cycles
		needed to check. We only emit ambiguity warnings in exact ambiguity
		mode.

		For example, we might know that we have conflicting configurations.
		But, that does not mean that there is no way forward without a
		conflict. It's possible to have nonconflicting alt subsets as in:

		   LL altSubSets=[{1, 2}, {1, 2}, {1}, {1, 2}]

		from

		   [(17,1,[5 $]), (13,1,[5 10 $]), (21,1,[5 10 $]), (11,1,[$]),
			(13,2,[5 10 $]), (21,2,[5 10 $]), (11,2,[$])]

		In this case, (17,1,[5 $]) indicates there is some next sequence that
		would resolve this without conflict to alternative 1. Any other viable
		next sequence, however, is associated with a conflict.  We stop
		looking for input because no amount of further lookahead will alter
		the fact that we should predict alternative 1.  We just can't say for
		sure that there is an ambiguity without looking further.
		*/
    reportAmbiguity(dfa, D, startIndex, input.index(), foundExactAmbig, reach.getAlts(), reach);
    return predictedAlt;
}
Also used : NoViableAltException(org.antlr.v4.runtime.NoViableAltException) BitSet(java.util.BitSet)

Aggregations

ATN (org.antlr.v4.runtime.atn.ATN)73 LexerGrammar (org.antlr.v4.tool.LexerGrammar)48 Test (org.junit.Test)41 ATNState (org.antlr.v4.runtime.atn.ATNState)23 Grammar (org.antlr.v4.tool.Grammar)20 IntervalSet (org.antlr.v4.runtime.misc.IntervalSet)18 ParserATNFactory (org.antlr.v4.automata.ParserATNFactory)16 ArrayList (java.util.ArrayList)13 DFA (org.antlr.v4.runtime.dfa.DFA)13 ATNDeserializer (org.antlr.v4.runtime.atn.ATNDeserializer)12 LexerATNSimulator (org.antlr.v4.runtime.atn.LexerATNSimulator)11 STGroupString (org.stringtemplate.v4.STGroupString)11 DecisionState (org.antlr.v4.runtime.atn.DecisionState)10 BaseRuntimeTest.antlrOnString (org.antlr.v4.test.runtime.BaseRuntimeTest.antlrOnString)10 Rule (org.antlr.v4.tool.Rule)10 DOTGenerator (org.antlr.v4.tool.DOTGenerator)9 LexerATNFactory (org.antlr.v4.automata.LexerATNFactory)8 IntegerList (org.antlr.v4.runtime.misc.IntegerList)6 ErrorQueue (org.antlr.v4.test.runtime.ErrorQueue)6 BitSet (java.util.BitSet)5