use of org.antlr.v4.runtime.atn.PredictionContextCache in project antlr4 by antlr.
the class TestGraphNodes method setUp.
@Before
public void setUp() {
PredictionContext.globalNodeCount = 1;
contextCache = new PredictionContextCache();
}
use of org.antlr.v4.runtime.atn.PredictionContextCache in project antlr4 by antlr.
the class TestATNParserPrediction method checkPredictedAlt.
/**
* first check that the ATN predicts right alt.
* Then check adaptive prediction.
*/
public void checkPredictedAlt(LexerGrammar lg, Grammar g, int decision, String inputString, int expectedAlt) {
Tool.internalOption_ShowATNConfigsInDFA = true;
ATN lexatn = createATN(lg, true);
LexerATNSimulator lexInterp = new LexerATNSimulator(lexatn, new DFA[] { new DFA(lexatn.modeToStartState.get(Lexer.DEFAULT_MODE)) }, new PredictionContextCache());
IntegerList types = getTokenTypesViaATN(inputString, lexInterp);
// System.out.println(types);
semanticProcess(lg);
g.importVocab(lg);
semanticProcess(g);
ParserATNFactory f = new ParserATNFactory(g);
ATN atn = f.createATN();
DOTGenerator dot = new DOTGenerator(g);
Rule r = g.getRule("a");
// if ( r!=null) System.out.println(dot.getDOT(atn.ruleToStartState[r.index]));
r = g.getRule("b");
// if ( r!=null) System.out.println(dot.getDOT(atn.ruleToStartState[r.index]));
r = g.getRule("e");
// if ( r!=null) System.out.println(dot.getDOT(atn.ruleToStartState[r.index]));
r = g.getRule("ifstat");
// if ( r!=null) System.out.println(dot.getDOT(atn.ruleToStartState[r.index]));
r = g.getRule("block");
// if ( r!=null) System.out.println(dot.getDOT(atn.ruleToStartState[r.index]));
// Check ATN prediction
// ParserATNSimulator interp = new ParserATNSimulator(atn);
TokenStream input = new MockIntTokenStream(types);
ParserInterpreterForTesting interp = new ParserInterpreterForTesting(g, input);
int alt = interp.adaptivePredict(input, decision, ParserRuleContext.EMPTY);
assertEquals(expectedAlt, alt);
// Check adaptive prediction
input.seek(0);
alt = interp.adaptivePredict(input, decision, null);
assertEquals(expectedAlt, alt);
// run 2x; first time creates DFA in atn
input.seek(0);
alt = interp.adaptivePredict(input, decision, null);
assertEquals(expectedAlt, alt);
}
use of org.antlr.v4.runtime.atn.PredictionContextCache in project antlr4 by tunnelvisionlabs.
the class ParserATNSimulator method addDFAState.
/**
* See comment on LexerInterpreter.addDFAState.
*/
@NotNull
protected DFAState addDFAState(@NotNull DFA dfa, @NotNull ATNConfigSet configs, PredictionContextCache contextCache) {
final boolean enableDfa = enable_global_context_dfa || !configs.isOutermostConfigSet();
if (enableDfa) {
if (!configs.isReadOnly()) {
configs.optimizeConfigs(this);
}
DFAState proposed = createDFAState(dfa, configs);
DFAState existing = dfa.states.get(proposed);
if (existing != null)
return existing;
}
if (!configs.isReadOnly()) {
if (configs.getConflictInfo() == null) {
configs.setConflictInfo(isConflicted(configs, contextCache));
}
}
DFAState newState = createDFAState(dfa, configs.clone(true));
DecisionState decisionState = atn.getDecisionState(dfa.decision);
int predictedAlt = getUniqueAlt(configs);
if (predictedAlt != ATN.INVALID_ALT_NUMBER) {
newState.setAcceptState(new AcceptStateInfo(predictedAlt));
} else if (configs.getConflictingAlts() != null) {
newState.setAcceptState(new AcceptStateInfo(newState.configs.getConflictingAlts().nextSetBit(0)));
}
if (newState.isAcceptState() && configs.hasSemanticContext()) {
predicateDFAState(newState, configs, decisionState.getNumberOfTransitions());
}
if (!enableDfa) {
return newState;
}
DFAState added = dfa.addState(newState);
if (debug && added == newState)
System.out.println("adding new DFA state: " + newState);
return added;
}
use of org.antlr.v4.runtime.atn.PredictionContextCache in project antlr4 by tunnelvisionlabs.
the class ParserATNSimulator method computeReachSet.
protected SimulatorState computeReachSet(DFA dfa, SimulatorState previous, int t, PredictionContextCache contextCache) {
final boolean useContext = previous.useContext;
ParserRuleContext remainingGlobalContext = previous.remainingOuterContext;
DFAState s = previous.s0;
if (useContext) {
while (s.isContextSymbol(t)) {
DFAState next = null;
if (remainingGlobalContext != null) {
remainingGlobalContext = skipTailCalls(remainingGlobalContext);
next = s.getContextTarget(getReturnState(remainingGlobalContext));
}
if (next == null) {
break;
}
assert remainingGlobalContext != null;
remainingGlobalContext = remainingGlobalContext.getParent();
s = next;
}
}
assert !isAcceptState(s, useContext);
if (isAcceptState(s, useContext)) {
return new SimulatorState(previous.outerContext, s, useContext, remainingGlobalContext);
}
final DFAState s0 = s;
DFAState target = getExistingTargetState(s0, t);
if (target == null) {
Tuple2<DFAState, ParserRuleContext> result = computeTargetState(dfa, s0, remainingGlobalContext, t, useContext, contextCache);
target = result.getItem1();
remainingGlobalContext = result.getItem2();
}
if (target == ERROR) {
return null;
}
assert !useContext || !target.configs.getDipsIntoOuterContext();
return new SimulatorState(previous.outerContext, target, useContext, remainingGlobalContext);
}
use of org.antlr.v4.runtime.atn.PredictionContextCache in project antlr4 by tunnelvisionlabs.
the class ParserATNSimulator method computeTargetState.
/**
* Compute a target state for an edge in the DFA, and attempt to add the
* computed state and corresponding edge to the DFA.
*
* @param dfa
* @param s The current DFA state
* @param remainingGlobalContext
* @param t The next input symbol
* @param useContext
* @param contextCache
*
* @return The computed target DFA state for the given input symbol
* {@code t}. If {@code t} does not lead to a valid DFA state, this method
* returns {@link #ERROR}.
*/
@NotNull
protected Tuple2<DFAState, ParserRuleContext> computeTargetState(@NotNull DFA dfa, @NotNull DFAState s, ParserRuleContext remainingGlobalContext, int t, boolean useContext, PredictionContextCache contextCache) {
List<ATNConfig> closureConfigs = new ArrayList<ATNConfig>(s.configs);
IntegerList contextElements = null;
ATNConfigSet reach = new ATNConfigSet();
boolean stepIntoGlobal;
do {
boolean hasMoreContext = !useContext || remainingGlobalContext != null;
if (!hasMoreContext) {
reach.setOutermostConfigSet(true);
}
ATNConfigSet reachIntermediate = new ATNConfigSet();
/* Configurations already in a rule stop state indicate reaching the end
* of the decision rule (local context) or end of the start rule (full
* context). Once reached, these configurations are never updated by a
* closure operation, so they are handled separately for the performance
* advantage of having a smaller intermediate set when calling closure.
*
* For full-context reach operations, separate handling is required to
* ensure that the alternative matching the longest overall sequence is
* chosen when multiple such configurations can match the input.
*/
List<ATNConfig> skippedStopStates = null;
for (ATNConfig c : closureConfigs) {
if (debug)
System.out.println("testing " + getTokenName(t) + " at " + c.toString());
if (c.getState() instanceof RuleStopState) {
assert c.getContext().isEmpty();
if (useContext && !c.getReachesIntoOuterContext() || t == IntStream.EOF) {
if (skippedStopStates == null) {
skippedStopStates = new ArrayList<ATNConfig>();
}
skippedStopStates.add(c);
}
continue;
}
int n = c.getState().getNumberOfOptimizedTransitions();
for (int ti = 0; ti < n; ti++) {
// for each optimized transition
Transition trans = c.getState().getOptimizedTransition(ti);
ATNState target = getReachableTarget(c, trans, t);
if (target != null) {
reachIntermediate.add(c.transform(target, false), contextCache);
}
}
}
/* This block optimizes the reach operation for intermediate sets which
* trivially indicate a termination state for the overall
* adaptivePredict operation.
*
* The conditions assume that intermediate
* contains all configurations relevant to the reach set, but this
* condition is not true when one or more configurations have been
* withheld in skippedStopStates, or when the current symbol is EOF.
*/
if (optimize_unique_closure && skippedStopStates == null && t != Token.EOF && reachIntermediate.getUniqueAlt() != ATN.INVALID_ALT_NUMBER) {
reachIntermediate.setOutermostConfigSet(reach.isOutermostConfigSet());
reach = reachIntermediate;
break;
}
/* If the reach set could not be trivially determined, perform a closure
* operation on the intermediate set to compute its initial value.
*/
final boolean collectPredicates = false;
boolean treatEofAsEpsilon = t == Token.EOF;
closure(reachIntermediate, reach, collectPredicates, hasMoreContext, contextCache, treatEofAsEpsilon);
stepIntoGlobal = reach.getDipsIntoOuterContext();
if (t == IntStream.EOF) {
/* After consuming EOF no additional input is possible, so we are
* only interested in configurations which reached the end of the
* decision rule (local context) or end of the start rule (full
* context). Update reach to contain only these configurations. This
* handles both explicit EOF transitions in the grammar and implicit
* EOF transitions following the end of the decision or start rule.
*
* This is handled before the configurations in skippedStopStates,
* because any configurations potentially added from that list are
* already guaranteed to meet this condition whether or not it's
* required.
*/
reach = removeAllConfigsNotInRuleStopState(reach, contextCache);
}
/* If skippedStopStates is not null, then it contains at least one
* configuration. For full-context reach operations, these
* configurations reached the end of the start rule, in which case we
* only add them back to reach if no configuration during the current
* closure operation reached such a state. This ensures adaptivePredict
* chooses an alternative matching the longest overall sequence when
* multiple alternatives are viable.
*/
if (skippedStopStates != null && (!useContext || !PredictionMode.hasConfigInRuleStopState(reach))) {
assert !skippedStopStates.isEmpty();
for (ATNConfig c : skippedStopStates) {
reach.add(c, contextCache);
}
}
if (useContext && stepIntoGlobal) {
reach.clear();
remainingGlobalContext = skipTailCalls(remainingGlobalContext);
int nextContextElement = getReturnState(remainingGlobalContext);
if (contextElements == null) {
contextElements = new IntegerList();
}
if (remainingGlobalContext.isEmpty()) {
remainingGlobalContext = null;
} else {
remainingGlobalContext = remainingGlobalContext.getParent();
}
contextElements.add(nextContextElement);
if (nextContextElement != PredictionContext.EMPTY_FULL_STATE_KEY) {
for (int i = 0; i < closureConfigs.size(); i++) {
closureConfigs.set(i, closureConfigs.get(i).appendContext(nextContextElement, contextCache));
}
}
}
} while (useContext && stepIntoGlobal);
if (reach.isEmpty()) {
addDFAEdge(s, t, ERROR);
return Tuple.create(ERROR, remainingGlobalContext);
}
DFAState result = addDFAEdge(dfa, s, t, contextElements, reach, contextCache);
return Tuple.create(result, remainingGlobalContext);
}
Aggregations