use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rel.RelNode in project flink by apache.
the class FlinkRelDecorrelator method projectJoinOutputWithNullability.
/**
* Pulls project above the join from its RHS input. Enforces nullability
* for join output.
*
* @param join Join
* @param project Original project as the right-hand input of the join
* @param nullIndicatorPos Position of null indicator
* @return the subtree with the new LogicalProject at the root
*/
private RelNode projectJoinOutputWithNullability(LogicalJoin join, LogicalProject project, int nullIndicatorPos) {
final RelDataTypeFactory typeFactory = join.getCluster().getTypeFactory();
final RelNode left = join.getLeft();
final JoinRelType joinType = join.getJoinType();
RexInputRef nullIndicator = new RexInputRef(nullIndicatorPos, typeFactory.createTypeWithNullability(join.getRowType().getFieldList().get(nullIndicatorPos).getType(), true));
// now create the new project
List<Pair<RexNode, String>> newProjExprs = Lists.newArrayList();
// project everything from the LHS and then those from the original
// projRel
List<RelDataTypeField> leftInputFields = left.getRowType().getFieldList();
for (int i = 0; i < leftInputFields.size(); i++) {
newProjExprs.add(RexInputRef.of2(i, leftInputFields));
}
// Marked where the projected expr is coming from so that the types will
// become nullable for the original projections which are now coming out
// of the nullable side of the OJ.
boolean projectPulledAboveLeftCorrelator = joinType.generatesNullsOnRight();
for (Pair<RexNode, String> pair : project.getNamedProjects()) {
RexNode newProjExpr = removeCorrelationExpr(pair.left, projectPulledAboveLeftCorrelator, nullIndicator);
newProjExprs.add(Pair.of(newProjExpr, pair.right));
}
return RelOptUtil.createProject(join, newProjExprs, false);
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rel.RelNode in project flink by apache.
the class FlinkRelDecorrelator method decorrelateRel.
/**
* Rewrite LogicalJoin.
*
* @param rel LogicalJoin
*/
public Frame decorrelateRel(LogicalJoin rel) {
//
// Rewrite logic:
//
// 1. rewrite join condition.
// 2. map output positions and produce cor vars if any.
//
final RelNode oldLeft = rel.getInput(0);
final RelNode oldRight = rel.getInput(1);
final Frame leftFrame = getInvoke(oldLeft, rel);
final Frame rightFrame = getInvoke(oldRight, rel);
if (leftFrame == null || rightFrame == null) {
// If any input has not been rewritten, do not rewrite this rel.
return null;
}
final RelNode newJoin = LogicalJoin.create(leftFrame.r, rightFrame.r, decorrelateExpr(rel.getCondition()), ImmutableSet.<CorrelationId>of(), rel.getJoinType());
// Create the mapping between the output of the old correlation rel
// and the new join rel
Map<Integer, Integer> mapOldToNewOutputPos = Maps.newHashMap();
int oldLeftFieldCount = oldLeft.getRowType().getFieldCount();
int newLeftFieldCount = leftFrame.r.getRowType().getFieldCount();
int oldRightFieldCount = oldRight.getRowType().getFieldCount();
assert rel.getRowType().getFieldCount() == oldLeftFieldCount + oldRightFieldCount;
// Left input positions are not changed.
mapOldToNewOutputPos.putAll(leftFrame.oldToNewOutputPos);
// Right input positions are shifted by newLeftFieldCount.
for (int i = 0; i < oldRightFieldCount; i++) {
mapOldToNewOutputPos.put(i + oldLeftFieldCount, rightFrame.oldToNewOutputPos.get(i) + newLeftFieldCount);
}
final SortedMap<Correlation, Integer> mapCorVarToOutputPos = new TreeMap<>(leftFrame.corVarOutputPos);
// Right input positions are shifted by newLeftFieldCount.
for (Map.Entry<Correlation, Integer> entry : rightFrame.corVarOutputPos.entrySet()) {
mapCorVarToOutputPos.put(entry.getKey(), entry.getValue() + newLeftFieldCount);
}
return register(rel, newJoin, mapOldToNewOutputPos, mapCorVarToOutputPos);
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rel.RelNode in project flink by apache.
the class FlinkRelDecorrelator method decorrelateRel.
/**
* Rewrites a {@link LogicalAggregate}.
*
* @param rel Aggregate to rewrite
*/
public Frame decorrelateRel(LogicalAggregate rel) {
if (rel.getGroupType() != Aggregate.Group.SIMPLE) {
throw new AssertionError(Bug.CALCITE_461_FIXED);
}
// Aggregate itself should not reference cor vars.
assert !cm.mapRefRelToCorVar.containsKey(rel);
final RelNode oldInput = rel.getInput();
final Frame frame = getInvoke(oldInput, rel);
if (frame == null) {
// If input has not been rewritten, do not rewrite this rel.
return null;
}
final RelNode newInput = frame.r;
// map from newInput
Map<Integer, Integer> mapNewInputToProjOutputPos = Maps.newHashMap();
final int oldGroupKeyCount = rel.getGroupSet().cardinality();
// Project projects the original expressions,
// plus any correlated variables the input wants to pass along.
final List<Pair<RexNode, String>> projects = Lists.newArrayList();
List<RelDataTypeField> newInputOutput = newInput.getRowType().getFieldList();
int newPos = 0;
// oldInput has the original group by keys in the front.
final NavigableMap<Integer, RexLiteral> omittedConstants = new TreeMap<>();
for (int i = 0; i < oldGroupKeyCount; i++) {
final RexLiteral constant = projectedLiteral(newInput, i);
if (constant != null) {
// Exclude constants. Aggregate({true}) occurs because Aggregate({})
// would generate 1 row even when applied to an empty table.
omittedConstants.put(i, constant);
continue;
}
int newInputPos = frame.oldToNewOutputPos.get(i);
projects.add(RexInputRef.of2(newInputPos, newInputOutput));
mapNewInputToProjOutputPos.put(newInputPos, newPos);
newPos++;
}
final SortedMap<Correlation, Integer> mapCorVarToOutputPos = new TreeMap<>();
if (!frame.corVarOutputPos.isEmpty()) {
// position oldGroupKeyCount.
for (Map.Entry<Correlation, Integer> entry : frame.corVarOutputPos.entrySet()) {
projects.add(RexInputRef.of2(entry.getValue(), newInputOutput));
mapCorVarToOutputPos.put(entry.getKey(), newPos);
mapNewInputToProjOutputPos.put(entry.getValue(), newPos);
newPos++;
}
}
// add the remaining fields
final int newGroupKeyCount = newPos;
for (int i = 0; i < newInputOutput.size(); i++) {
if (!mapNewInputToProjOutputPos.containsKey(i)) {
projects.add(RexInputRef.of2(i, newInputOutput));
mapNewInputToProjOutputPos.put(i, newPos);
newPos++;
}
}
assert newPos == newInputOutput.size();
// This Project will be what the old input maps to,
// replacing any previous mapping from old input).
RelNode newProject = RelOptUtil.createProject(newInput, projects, false);
// update mappings:
// oldInput ----> newInput
//
// newProject
// |
// oldInput ----> newInput
//
// is transformed to
//
// oldInput ----> newProject
// |
// newInput
Map<Integer, Integer> combinedMap = Maps.newHashMap();
for (Integer oldInputPos : frame.oldToNewOutputPos.keySet()) {
combinedMap.put(oldInputPos, mapNewInputToProjOutputPos.get(frame.oldToNewOutputPos.get(oldInputPos)));
}
register(oldInput, newProject, combinedMap, mapCorVarToOutputPos);
// now it's time to rewrite the Aggregate
final ImmutableBitSet newGroupSet = ImmutableBitSet.range(newGroupKeyCount);
List<AggregateCall> newAggCalls = Lists.newArrayList();
List<AggregateCall> oldAggCalls = rel.getAggCallList();
int oldInputOutputFieldCount = rel.getGroupSet().cardinality();
int newInputOutputFieldCount = newGroupSet.cardinality();
int i = -1;
for (AggregateCall oldAggCall : oldAggCalls) {
++i;
List<Integer> oldAggArgs = oldAggCall.getArgList();
List<Integer> aggArgs = Lists.newArrayList();
// for the argument.
for (int oldPos : oldAggArgs) {
aggArgs.add(combinedMap.get(oldPos));
}
final int filterArg = oldAggCall.filterArg < 0 ? oldAggCall.filterArg : combinedMap.get(oldAggCall.filterArg);
newAggCalls.add(oldAggCall.adaptTo(newProject, aggArgs, filterArg, oldGroupKeyCount, newGroupKeyCount));
// The old to new output position mapping will be the same as that
// of newProject, plus any aggregates that the oldAgg produces.
combinedMap.put(oldInputOutputFieldCount + i, newInputOutputFieldCount + i);
}
relBuilder.push(LogicalAggregate.create(newProject, false, newGroupSet, null, newAggCalls));
if (!omittedConstants.isEmpty()) {
final List<RexNode> postProjects = new ArrayList<>(relBuilder.fields());
for (Map.Entry<Integer, RexLiteral> entry : omittedConstants.descendingMap().entrySet()) {
postProjects.add(entry.getKey() + frame.corVarOutputPos.size(), entry.getValue());
}
relBuilder.project(postProjects);
}
// located at the same position as the input newProject.
return register(rel, relBuilder.build(), combinedMap, mapCorVarToOutputPos);
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rel.RelNode in project drill by apache.
the class JoinPruleBase method createDistBothPlan.
// Create join plan with both left and right children hash distributed. If the physical join type
// is MergeJoin, a collation must be provided for both left and right child and the plan will contain
// sort converter if necessary to provide the collation.
private void createDistBothPlan(RelOptRuleCall call, DrillJoinRel join, PhysicalJoinType physicalJoinType, RelNode left, RelNode right, RelCollation collationLeft, RelCollation collationRight, DrillDistributionTrait hashLeftPartition, DrillDistributionTrait hashRightPartition) throws InvalidRelException {
//DrillDistributionTrait hashLeftPartition = new DrillDistributionTrait(DrillDistributionTrait.DistributionType.HASH_DISTRIBUTED, ImmutableList.copyOf(getDistributionField(join.getLeftKeys())));
//DrillDistributionTrait hashRightPartition = new DrillDistributionTrait(DrillDistributionTrait.DistributionType.HASH_DISTRIBUTED, ImmutableList.copyOf(getDistributionField(join.getRightKeys())));
RelTraitSet traitsLeft = null;
RelTraitSet traitsRight = null;
if (physicalJoinType == PhysicalJoinType.MERGE_JOIN) {
assert collationLeft != null && collationRight != null;
traitsLeft = left.getTraitSet().plus(Prel.DRILL_PHYSICAL).plus(collationLeft).plus(hashLeftPartition);
traitsRight = right.getTraitSet().plus(Prel.DRILL_PHYSICAL).plus(collationRight).plus(hashRightPartition);
} else if (physicalJoinType == PhysicalJoinType.HASH_JOIN) {
traitsLeft = left.getTraitSet().plus(Prel.DRILL_PHYSICAL).plus(hashLeftPartition);
traitsRight = right.getTraitSet().plus(Prel.DRILL_PHYSICAL).plus(hashRightPartition);
}
final RelNode convertedLeft = convert(left, traitsLeft);
final RelNode convertedRight = convert(right, traitsRight);
DrillJoinRelBase newJoin = null;
if (physicalJoinType == PhysicalJoinType.HASH_JOIN) {
newJoin = new HashJoinPrel(join.getCluster(), traitsLeft, convertedLeft, convertedRight, join.getCondition(), join.getJoinType());
} else if (physicalJoinType == PhysicalJoinType.MERGE_JOIN) {
newJoin = new MergeJoinPrel(join.getCluster(), traitsLeft, convertedLeft, convertedRight, join.getCondition(), join.getJoinType());
}
call.transformTo(newJoin);
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rel.RelNode in project drill by apache.
the class LimitUnionExchangeTransposeRule method onMatch.
@Override
public void onMatch(RelOptRuleCall call) {
final LimitPrel limit = (LimitPrel) call.rel(0);
final UnionExchangePrel unionExchangePrel = (UnionExchangePrel) call.rel(1);
RelNode child = unionExchangePrel.getInput();
final int offset = limit.getOffset() != null ? Math.max(0, RexLiteral.intValue(limit.getOffset())) : 0;
final int fetch = Math.max(0, RexLiteral.intValue(limit.getFetch()));
// child Limit uses conservative approach: use offset 0 and fetch = parent limit offset + parent limit fetch.
final RexNode childFetch = limit.getCluster().getRexBuilder().makeExactLiteral(BigDecimal.valueOf(offset + fetch));
final RelNode limitUnderExchange = new LimitPrel(child.getCluster(), child.getTraitSet(), child, null, childFetch);
final RelNode newUnionExch = new UnionExchangePrel(unionExchangePrel.getCluster(), unionExchangePrel.getTraitSet(), limitUnderExchange);
final RelNode limitAboveExchange = new LimitPrel(limit.getCluster(), limit.getTraitSet(), newUnionExch, limit.getOffset(), limit.getFetch(), true);
call.transformTo(limitAboveExchange);
}
Aggregations