use of org.apache.calcite.rel.metadata.RelMetadataQuery in project flink by apache.
the class FlinkAggregateJoinTransposeRule method onMatch.
public void onMatch(RelOptRuleCall call) {
final Aggregate aggregate = call.rel(0);
final Join join = call.rel(1);
final RexBuilder rexBuilder = aggregate.getCluster().getRexBuilder();
final RelBuilder relBuilder = call.builder();
// If any aggregate call has a filter, bail out
for (AggregateCall aggregateCall : aggregate.getAggCallList()) {
if (aggregateCall.getAggregation().unwrap(SqlSplittableAggFunction.class) == null) {
return;
}
if (aggregateCall.filterArg >= 0) {
return;
}
}
// aggregate operator
if (join.getJoinType() != JoinRelType.INNER) {
return;
}
if (!allowFunctions && !aggregate.getAggCallList().isEmpty()) {
return;
}
// Do the columns used by the join appear in the output of the aggregate?
final ImmutableBitSet aggregateColumns = aggregate.getGroupSet();
final RelMetadataQuery mq = RelMetadataQuery.instance();
final ImmutableBitSet keyColumns = keyColumns(aggregateColumns, mq.getPulledUpPredicates(join).pulledUpPredicates);
final ImmutableBitSet joinColumns = RelOptUtil.InputFinder.bits(join.getCondition());
final boolean allColumnsInAggregate = keyColumns.contains(joinColumns);
final ImmutableBitSet belowAggregateColumns = aggregateColumns.union(joinColumns);
// Split join condition
final List<Integer> leftKeys = Lists.newArrayList();
final List<Integer> rightKeys = Lists.newArrayList();
final List<Boolean> filterNulls = Lists.newArrayList();
RexNode nonEquiConj = RelOptUtil.splitJoinCondition(join.getLeft(), join.getRight(), join.getCondition(), leftKeys, rightKeys, filterNulls);
// If it contains non-equi join conditions, we bail out
if (!nonEquiConj.isAlwaysTrue()) {
return;
}
// Push each aggregate function down to each side that contains all of its
// arguments. Note that COUNT(*), because it has no arguments, can go to
// both sides.
final Map<Integer, Integer> map = new HashMap<>();
final List<Side> sides = new ArrayList<>();
int uniqueCount = 0;
int offset = 0;
int belowOffset = 0;
for (int s = 0; s < 2; s++) {
final Side side = new Side();
final RelNode joinInput = join.getInput(s);
int fieldCount = joinInput.getRowType().getFieldCount();
final ImmutableBitSet fieldSet = ImmutableBitSet.range(offset, offset + fieldCount);
final ImmutableBitSet belowAggregateKeyNotShifted = belowAggregateColumns.intersect(fieldSet);
for (Ord<Integer> c : Ord.zip(belowAggregateKeyNotShifted)) {
map.put(c.e, belowOffset + c.i);
}
final ImmutableBitSet belowAggregateKey = belowAggregateKeyNotShifted.shift(-offset);
final boolean unique;
if (!allowFunctions) {
assert aggregate.getAggCallList().isEmpty();
// If there are no functions, it doesn't matter as much whether we
// aggregate the inputs before the join, because there will not be
// any functions experiencing a cartesian product effect.
//
// But finding out whether the input is already unique requires a call
// to areColumnsUnique that currently (until [CALCITE-1048] "Make
// metadata more robust" is fixed) places a heavy load on
// the metadata system.
//
// So we choose to imagine the the input is already unique, which is
// untrue but harmless.
//
Util.discard(Bug.CALCITE_1048_FIXED);
unique = true;
} else {
final Boolean unique0 = mq.areColumnsUnique(joinInput, belowAggregateKey);
unique = unique0 != null && unique0;
}
if (unique) {
++uniqueCount;
side.aggregate = false;
side.newInput = joinInput;
} else {
side.aggregate = true;
List<AggregateCall> belowAggCalls = new ArrayList<>();
final SqlSplittableAggFunction.Registry<AggregateCall> belowAggCallRegistry = registry(belowAggCalls);
final Mappings.TargetMapping mapping = s == 0 ? Mappings.createIdentity(fieldCount) : Mappings.createShiftMapping(fieldCount + offset, 0, offset, fieldCount);
for (Ord<AggregateCall> aggCall : Ord.zip(aggregate.getAggCallList())) {
final SqlAggFunction aggregation = aggCall.e.getAggregation();
final SqlSplittableAggFunction splitter = Preconditions.checkNotNull(aggregation.unwrap(SqlSplittableAggFunction.class));
final AggregateCall call1;
if (fieldSet.contains(ImmutableBitSet.of(aggCall.e.getArgList()))) {
call1 = splitter.split(aggCall.e, mapping);
} else {
call1 = splitter.other(rexBuilder.getTypeFactory(), aggCall.e);
}
if (call1 != null) {
side.split.put(aggCall.i, belowAggregateKey.cardinality() + belowAggCallRegistry.register(call1));
}
}
side.newInput = relBuilder.push(joinInput).aggregate(relBuilder.groupKey(belowAggregateKey, false, null), belowAggCalls).build();
}
offset += fieldCount;
belowOffset += side.newInput.getRowType().getFieldCount();
sides.add(side);
}
if (uniqueCount == 2) {
// invocation of this rule; if we continue we might loop forever.
return;
}
// Update condition
final Mapping mapping = (Mapping) Mappings.target(new Function<Integer, Integer>() {
public Integer apply(Integer a0) {
return map.get(a0);
}
}, join.getRowType().getFieldCount(), belowOffset);
final RexNode newCondition = RexUtil.apply(mapping, join.getCondition());
// Create new join
relBuilder.push(sides.get(0).newInput).push(sides.get(1).newInput).join(join.getJoinType(), newCondition);
// Aggregate above to sum up the sub-totals
final List<AggregateCall> newAggCalls = new ArrayList<>();
final int groupIndicatorCount = aggregate.getGroupCount() + aggregate.getIndicatorCount();
final int newLeftWidth = sides.get(0).newInput.getRowType().getFieldCount();
final List<RexNode> projects = new ArrayList<>(rexBuilder.identityProjects(relBuilder.peek().getRowType()));
for (Ord<AggregateCall> aggCall : Ord.zip(aggregate.getAggCallList())) {
final SqlAggFunction aggregation = aggCall.e.getAggregation();
final SqlSplittableAggFunction splitter = Preconditions.checkNotNull(aggregation.unwrap(SqlSplittableAggFunction.class));
final Integer leftSubTotal = sides.get(0).split.get(aggCall.i);
final Integer rightSubTotal = sides.get(1).split.get(aggCall.i);
newAggCalls.add(splitter.topSplit(rexBuilder, registry(projects), groupIndicatorCount, relBuilder.peek().getRowType(), aggCall.e, leftSubTotal == null ? -1 : leftSubTotal, rightSubTotal == null ? -1 : rightSubTotal + newLeftWidth));
}
relBuilder.project(projects);
boolean aggConvertedToProjects = false;
if (allColumnsInAggregate) {
// let's see if we can convert aggregate into projects
List<RexNode> projects2 = new ArrayList<>();
for (int key : Mappings.apply(mapping, aggregate.getGroupSet())) {
projects2.add(relBuilder.field(key));
}
for (AggregateCall newAggCall : newAggCalls) {
final SqlSplittableAggFunction splitter = newAggCall.getAggregation().unwrap(SqlSplittableAggFunction.class);
if (splitter != null) {
projects2.add(splitter.singleton(rexBuilder, relBuilder.peek().getRowType(), newAggCall));
}
}
if (projects2.size() == aggregate.getGroupSet().cardinality() + newAggCalls.size()) {
// We successfully converted agg calls into projects.
relBuilder.project(projects2);
aggConvertedToProjects = true;
}
}
if (!aggConvertedToProjects) {
relBuilder.aggregate(relBuilder.groupKey(Mappings.apply(mapping, aggregate.getGroupSet()), aggregate.indicator, Mappings.apply2(mapping, aggregate.getGroupSets())), newAggCalls);
}
call.transformTo(relBuilder.build());
}
use of org.apache.calcite.rel.metadata.RelMetadataQuery in project hive by apache.
the class FilterSelectivityEstimator method getMaxNDV.
private Double getMaxNDV(RexCall call) {
double tmpNDV;
double maxNDV = 1.0;
InputReferencedVisitor irv;
RelMetadataQuery mq = RelMetadataQuery.instance();
for (RexNode op : call.getOperands()) {
if (op instanceof RexInputRef) {
tmpNDV = HiveRelMdDistinctRowCount.getDistinctRowCount(this.childRel, mq, ((RexInputRef) op).getIndex());
if (tmpNDV > maxNDV)
maxNDV = tmpNDV;
} else {
irv = new InputReferencedVisitor();
irv.apply(op);
for (Integer childProjIndx : irv.inputPosReferenced) {
tmpNDV = HiveRelMdDistinctRowCount.getDistinctRowCount(this.childRel, mq, childProjIndx);
if (tmpNDV > maxNDV)
maxNDV = tmpNDV;
}
}
}
return maxNDV;
}
use of org.apache.calcite.rel.metadata.RelMetadataQuery in project hive by apache.
the class HiveAlgorithmsUtil method getSplitCountWithRepartition.
public static Integer getSplitCountWithRepartition(HiveJoin join) {
final Double maxSplitSize = join.getCluster().getPlanner().getContext().unwrap(HiveAlgorithmsConf.class).getMaxSplitSize();
// We repartition: new number of splits
RelMetadataQuery mq = RelMetadataQuery.instance();
final Double averageRowSize = mq.getAverageRowSize(join);
final Double rowCount = mq.getRowCount(join);
if (averageRowSize == null || rowCount == null) {
return null;
}
final Double totalSize = averageRowSize * rowCount;
final Double splitCount = totalSize / maxSplitSize;
return splitCount.intValue();
}
use of org.apache.calcite.rel.metadata.RelMetadataQuery in project hive by apache.
the class HiveAlgorithmsUtil method getJoinMemory.
public static Double getJoinMemory(HiveJoin join, MapJoinStreamingRelation streamingSide) {
Double memory = 0.0;
RelMetadataQuery mq = RelMetadataQuery.instance();
if (streamingSide == MapJoinStreamingRelation.NONE || streamingSide == MapJoinStreamingRelation.RIGHT_RELATION) {
// Left side
final Double leftAvgRowSize = mq.getAverageRowSize(join.getLeft());
final Double leftRowCount = mq.getRowCount(join.getLeft());
if (leftAvgRowSize == null || leftRowCount == null) {
return null;
}
memory += leftAvgRowSize * leftRowCount;
}
if (streamingSide == MapJoinStreamingRelation.NONE || streamingSide == MapJoinStreamingRelation.LEFT_RELATION) {
// Right side
final Double rightAvgRowSize = mq.getAverageRowSize(join.getRight());
final Double rightRowCount = mq.getRowCount(join.getRight());
if (rightAvgRowSize == null || rightRowCount == null) {
return null;
}
memory += rightAvgRowSize * rightRowCount;
}
return memory;
}
use of org.apache.calcite.rel.metadata.RelMetadataQuery in project hive by apache.
the class HiveOnTezCostModel method getAggregateCost.
@Override
public RelOptCost getAggregateCost(HiveAggregate aggregate) {
if (aggregate.isBucketedInput()) {
return HiveCost.FACTORY.makeZeroCost();
} else {
RelMetadataQuery mq = RelMetadataQuery.instance();
// 1. Sum of input cardinalities
final Double rCount = mq.getRowCount(aggregate.getInput());
if (rCount == null) {
return null;
}
// 2. CPU cost = sorting cost
final double cpuCost = algoUtils.computeSortCPUCost(rCount);
// 3. IO cost = cost of writing intermediary results to local FS +
// cost of reading from local FS for transferring to GBy +
// cost of transferring map outputs to GBy operator
final Double rAverageSize = mq.getAverageRowSize(aggregate.getInput());
if (rAverageSize == null) {
return null;
}
final double ioCost = algoUtils.computeSortIOCost(new Pair<Double, Double>(rCount, rAverageSize));
// 4. Result
return HiveCost.FACTORY.makeCost(rCount, cpuCost, ioCost);
}
}
Aggregations