use of org.apache.commons.math3.stat.descriptive.SummaryStatistics in project cassandra by apache.
the class TokenAllocation method replicatedOwnershipStats.
public static SummaryStatistics replicatedOwnershipStats(TokenMetadata tokenMetadata, AbstractReplicationStrategy rs, InetAddress endpoint) {
SummaryStatistics stat = new SummaryStatistics();
StrategyAdapter strategy = getStrategy(tokenMetadata, rs, endpoint);
for (Map.Entry<InetAddress, Double> en : evaluateReplicatedOwnership(tokenMetadata, rs).entrySet()) {
// Filter only in the same datacentre.
if (strategy.inAllocationRing(en.getKey()))
stat.addValue(en.getValue() / tokenMetadata.getTokens(en.getKey()).size());
}
return stat;
}
use of org.apache.commons.math3.stat.descriptive.SummaryStatistics in project cassandra by apache.
the class NoReplicationTokenAllocatorTest method updateSummary.
private void updateSummary(NoReplicationTokenAllocator<Unit> t, Summary su, Summary st, boolean print) {
int size = t.sortedTokens.size();
SummaryStatistics unitStat = new SummaryStatistics();
for (TokenAllocatorBase.Weighted<TokenAllocatorBase.UnitInfo> wu : t.sortedUnits) {
unitStat.addValue(wu.weight * size / t.tokensInUnits.get(wu.value.unit).size());
}
su.update(unitStat);
SummaryStatistics tokenStat = new SummaryStatistics();
for (PriorityQueue<TokenAllocatorBase.Weighted<TokenAllocatorBase.TokenInfo>> tokens : t.tokensInUnits.values()) {
for (TokenAllocatorBase.Weighted<TokenAllocatorBase.TokenInfo> token : tokens) {
tokenStat.addValue(token.weight);
}
}
st.update(tokenStat);
if (print) {
System.out.format("Size %d(%d) \tunit %s token %s %s\n", t.sortedUnits.size(), size, mms(unitStat), mms(tokenStat), t.strategy);
System.out.format("Worst intermediate unit\t%s token %s\n", su, st);
}
}
use of org.apache.commons.math3.stat.descriptive.SummaryStatistics in project GDSC-SMLM by aherbert.
the class DensityImage method logDensityResults.
/**
* Output a log message of the results including the average density for localisations and the expected average.
*
* @param results
* @param density
* @param radius
* @param filtered
* @return
*/
private SummaryStatistics logDensityResults(MemoryPeakResults results, int[] density, float radius, int filtered) {
float region = (float) (radius * radius * ((useSquareApproximation) ? 4 : Math.PI));
Rectangle bounds = results.getBounds();
float area = bounds.width * bounds.height;
float expected = results.size() * region / area;
SummaryStatistics summary = new SummaryStatistics();
for (int i = 0; i < results.size(); i++) {
summary.addValue(density[i]);
}
DensityManager dm = createDensityManager(results);
// Compute this using the input density scores since the radius is the same.
final double l = (useSquareApproximation) ? dm.ripleysLFunction(radius) : dm.ripleysLFunction(density, radius);
String msg = String.format("Density %s : N=%d, %.0fpx : Radius=%s : L(r) - r = %s : E = %s, Obs = %s (%sx)", results.getName(), summary.getN(), area, rounded(radius), rounded(l - radius), rounded(expected), rounded(summary.getMean()), rounded(summary.getMean() / expected));
if (filterLocalisations)
msg += String.format(" : Filtered=%d (%s%%)", filtered, rounded(filtered * 100.0 / density.length));
IJ.log(msg);
return summary;
}
use of org.apache.commons.math3.stat.descriptive.SummaryStatistics in project GDSC-SMLM by aherbert.
the class PSFEstimator method checkAngleSignificance.
private boolean checkAngleSignificance() {
boolean tryAgain = false;
if (ignore[ANGLE])
return tryAgain;
// The angle is relative to the major axis (X).
// It could be close to 0, 90 or 180 to allow it to be ignored in favour of a free circular function.
final double[] angles = sampleNew[ANGLE].getValues();
for (double testAngle : new double[] { 90, 0, 180 }) {
// The angle will be in the 0-180 domain.
// We need to compute the Statistical summary around the testAngle.
StatisticalSummary sampleStats;
if (testAngle == 0 || testAngle == 180) {
SummaryStatistics stats = new SummaryStatistics();
boolean zeroAngle = (testAngle == 0);
for (double a : angles) {
if (zeroAngle) {
// Convert to -90-90 domain
if (a > 90)
a -= 180;
} else {
// Convert to 90-270 domain
if (a < 90)
a += 180;
}
stats.addValue(a);
}
sampleStats = stats;
} else {
// Already in the 0-180 domain around the angle 90
sampleStats = sampleNew[ANGLE];
}
final double p = TestUtils.tTest(testAngle, sampleStats);
if (p > settings.pValue) {
log("NOTE: Angle is not significant: %g ~ %g (p=%g) => Re-run with fixed zero angle", sampleStats.getMean(), testAngle, p);
ignore[ANGLE] = true;
config.getFitConfiguration().setFitFunction(FitFunction.FREE_CIRCULAR);
tryAgain = true;
break;
} else
debug(" NOTE: Angle is significant: %g !~ %g (p=%g)", sampleNew[ANGLE].getMean(), testAngle, p);
}
return tryAgain;
}
use of org.apache.commons.math3.stat.descriptive.SummaryStatistics in project GDSC-SMLM by aherbert.
the class PCPALMFitting method fitRandomModel.
/**
* Fits the correlation curve with r>0 to the random model using the estimated density and precision. Parameters
* must be fit within a tolerance of the starting values.
*
* @param gr
* @param sigmaS
* The estimated precision
* @param proteinDensity
* The estimate protein density
* @return The fitted parameters [precision, density]
*/
private double[] fitRandomModel(double[][] gr, double sigmaS, double proteinDensity, String resultColour) {
final RandomModelFunction function = new RandomModelFunction();
randomModel = function;
log("Fitting %s: Estimated precision = %f nm, estimated protein density = %g um^-2", randomModel.getName(), sigmaS, proteinDensity * 1e6);
randomModel.setLogging(true);
for (int i = offset; i < gr[0].length; i++) {
// Only fit the curve above the estimated resolution (points below it will be subject to error)
if (gr[0][i] > sigmaS * fitAboveEstimatedPrecision)
randomModel.addPoint(gr[0][i], gr[1][i]);
}
LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer();
Optimum optimum;
try {
//@formatter:off
LeastSquaresProblem problem = new LeastSquaresBuilder().maxEvaluations(Integer.MAX_VALUE).maxIterations(3000).start(new double[] { sigmaS, proteinDensity }).target(function.getY()).weight(new DiagonalMatrix(function.getWeights())).model(function, new MultivariateMatrixFunction() {
public double[][] value(double[] point) throws IllegalArgumentException {
return function.jacobian(point);
}
}).build();
//@formatter:on
optimum = optimizer.optimize(problem);
} catch (TooManyIterationsException e) {
log("Failed to fit %s: Too many iterations (%s)", randomModel.getName(), e.getMessage());
return null;
} catch (ConvergenceException e) {
log("Failed to fit %s: %s", randomModel.getName(), e.getMessage());
return null;
}
randomModel.setLogging(false);
double[] parameters = optimum.getPoint().toArray();
// Ensure the width is positive
parameters[0] = Math.abs(parameters[0]);
double ss = optimum.getResiduals().dotProduct(optimum.getResiduals());
ic1 = Maths.getAkaikeInformationCriterionFromResiduals(ss, randomModel.size(), parameters.length);
final double fitSigmaS = parameters[0];
final double fitProteinDensity = parameters[1];
// Check the fitted parameters are within tolerance of the initial estimates
double e1 = parameterDrift(sigmaS, fitSigmaS);
double e2 = parameterDrift(proteinDensity, fitProteinDensity);
log(" %s fit: SS = %f. cAIC = %f. %d evaluations", randomModel.getName(), ss, ic1, optimum.getEvaluations());
log(" %s parameters:", randomModel.getName());
log(" Average precision = %s nm (%s%%)", Utils.rounded(fitSigmaS, 4), Utils.rounded(e1, 4));
log(" Average protein density = %s um^-2 (%s%%)", Utils.rounded(fitProteinDensity * 1e6, 4), Utils.rounded(e2, 4));
valid1 = true;
if (fittingTolerance > 0 && (Math.abs(e1) > fittingTolerance || Math.abs(e2) > fittingTolerance)) {
log(" Failed to fit %s within tolerance (%s%%): Average precision = %f nm (%s%%), average protein density = %g um^-2 (%s%%)", randomModel.getName(), Utils.rounded(fittingTolerance, 4), fitSigmaS, Utils.rounded(e1, 4), fitProteinDensity * 1e6, Utils.rounded(e2, 4));
valid1 = false;
}
if (valid1) {
// ---------
// TODO - My data does not comply with this criteria.
// This could be due to the PC-PALM Molecule code limiting the nmPerPixel to fit the images in memory
// thus removing correlations at small r.
// It could also be due to the nature of the random simulations being 3D not 2D membranes
// as per the PC-PALM paper.
// ---------
// Evaluate g(r)protein where:
// g(r)peaks = g(r)protein + g(r)stoch
// g(r)peaks ~ 1 + g(r)stoch
// Verify g(r)protein should be <1.5 for all r>0
double[] gr_stoch = randomModel.value(parameters);
double[] gr_peaks = randomModel.getY();
double[] gr_ = randomModel.getX();
//SummaryStatistics stats = new SummaryStatistics();
for (int i = 0; i < gr_peaks.length; i++) {
// Only evaluate above the fitted average precision
if (gr_[i] < fitSigmaS)
continue;
// Note the RandomModelFunction evaluates g(r)stoch + 1;
double gr_protein_i = gr_peaks[i] - (gr_stoch[i] - 1);
if (gr_protein_i > gr_protein_threshold) {
// Failed fit
log(" Failed to fit %s: g(r)protein %s > %s @ r=%s", randomModel.getName(), Utils.rounded(gr_protein_i, 4), Utils.rounded(gr_protein_threshold, 4), Utils.rounded(gr_[i], 4));
valid1 = false;
}
//stats.addValue(gr_i);
//System.out.printf("g(r)protein @ %f = %f\n", gr[0][i], gr_protein_i);
}
}
addResult(randomModel.getName(), resultColour, valid1, fitSigmaS, fitProteinDensity, 0, 0, 0, 0, ic1);
return parameters;
}
Aggregations