Search in sources :

Example 36 with DependencyManager

use of org.apache.derby.iapi.sql.depend.DependencyManager in project derby by apache.

the class GenericStatementContext method cleanupOnError.

// 
// Context interface
// 
/**
 * Close down the top ResultSet, if relevant, and rollback to the
 * internal savepoint, if one was set.
 *
 * @exception StandardException thrown on error. REVISIT: don't want
 * cleanupOnError's to throw exceptions.
 */
public void cleanupOnError(Throwable error) throws StandardException {
    if (SanityManager.DEBUG) {
        if (SanityManager.DEBUG_ON("traceSavepoints")) {
            SanityManager.DEBUG_PRINT("GenericStatementContext.cleanupOnError()", String.valueOf(hashCode()));
        }
    }
    try {
        /*
		** If it isn't a StandardException, then assume
		** session severity.  It is probably an unexpected
		** java error somewhere in the language.
        ** Store layer treats JVM error as session severity, 
        ** hence to be consistent and to avoid getting rawstore
        ** protocol violation errors, we treat java errors here
        ** to be of session severity.  
        */
        int severity = ExceptionSeverity.SESSION_SEVERITY;
        if (error instanceof StandardException) {
            StandardException se = (StandardException) error;
            // Update the severity.
            severity = se.getSeverity();
            // (for correctness, not optimization).
            if (SQLState.LANG_STATEMENT_NEEDS_RECOMPILE.equals(se.getMessageId())) {
                statementWasInvalidated = true;
            }
        }
        /**
         * Don't clean up this statement context if it's not in use.
         * This can happen if you get an error while calling one of
         * the JDBC getxxxx() methods on a ResultSet, since no statement
         * context is pushed when those calls occur.
         */
        if (!inUse) {
            return;
        }
        /* Clean up the ResultSet, if one exists */
        if (topResultSet != null) {
            topResultSet.cleanUp();
        }
        /* Close down any open subqueries */
        if (subqueryTrackingArray != null) {
            for (int index = 0; index < subqueryTrackingArray.length; index++) {
                /* Remember, the array is sparse, so only check
				 * non-null entries.
				 */
                if (subqueryTrackingArray[index] != null) {
                    subqueryTrackingArray[index].cleanUp();
                }
            }
        }
        /* Clean up any dependencies */
        if (dependencies != null) {
            DependencyManager dmgr = lcc.getDataDictionary().getDependencyManager();
            for (Iterator<Dependency> iterator = dependencies.iterator(); iterator.hasNext(); ) {
                Dependency dy = iterator.next();
                dmgr.clearInMemoryDependency(dy);
            }
            dependencies = null;
        }
        if (severity <= ExceptionSeverity.STATEMENT_SEVERITY && setSavePoint) {
            if (SanityManager.DEBUG) {
                if (SanityManager.DEBUG_ON("traceSavepoints")) {
                    SanityManager.DEBUG_PRINT("GenericStatementContext.cleanupOnError", "rolling back to: " + internalSavePointName);
                }
            }
            lcc.internalRollbackToSavepoint(internalSavePointName, false, null);
            clearSavePoint();
        }
        if (severity >= ExceptionSeverity.TRANSACTION_SEVERITY) {
            // transaction severity errors roll back the transaction.
            /*
			** We call clearSavePoint() above only for statement errors.
			** We don't call clearSavePoint() for transaction errors because
			** the savepoint will be rolled back anyway.  So in this case,
			** we need to indicate that the savepoint is not set.
			*/
            setSavePoint = false;
        }
        /* Pop the context */
        lcc.popStatementContext(this, error);
    } catch (Exception ex) {
        // DERBY-6722(GenericStatementContext.cleanupOnError()
        // needs protection from later errors during statement
        // cleanup
        ex.initCause(error);
        throw StandardException.unexpectedUserException(ex);
    }
}
Also used : StandardException(org.apache.derby.shared.common.error.StandardException) DependencyManager(org.apache.derby.iapi.sql.depend.DependencyManager) Dependency(org.apache.derby.iapi.sql.depend.Dependency) StandardException(org.apache.derby.shared.common.error.StandardException)

Example 37 with DependencyManager

use of org.apache.derby.iapi.sql.depend.DependencyManager in project derby by apache.

the class CreateIndexConstantAction method executeConstantAction.

// INTERFACE METHODS
/**
 *	This is the guts of the Execution-time logic for
 *  creating an index.
 *
 *  <P>
 *  A index is represented as:
 *  <UL>
 *  <LI> ConglomerateDescriptor.
 *  </UL>
 *  No dependencies are created.
 *
 *  @see ConglomerateDescriptor
 *  @see SchemaDescriptor
 *	@see ConstantAction#executeConstantAction
 *
 * @exception StandardException		Thrown on failure
 */
public void executeConstantAction(Activation activation) throws StandardException {
    TableDescriptor td;
    UUID toid;
    ColumnDescriptor columnDescriptor;
    int[] baseColumnPositions;
    IndexRowGenerator indexRowGenerator = null;
    ExecRow[] baseRows;
    ExecIndexRow[] indexRows;
    ExecRow[] compactBaseRows;
    GroupFetchScanController scan;
    RowLocationRetRowSource rowSource;
    long sortId;
    int maxBaseColumnPosition = -1;
    LanguageConnectionContext lcc = activation.getLanguageConnectionContext();
    DataDictionary dd = lcc.getDataDictionary();
    DependencyManager dm = dd.getDependencyManager();
    TransactionController tc = lcc.getTransactionExecute();
    /*
		** Inform the data dictionary that we are about to write to it.
		** There are several calls to data dictionary "get" methods here
		** that might be done in "read" mode in the data dictionary, but
		** it seemed safer to do this whole operation in "write" mode.
		**
		** We tell the data dictionary we're done writing at the end of
		** the transaction.
		*/
    dd.startWriting(lcc);
    /*
		** If the schema descriptor is null, then
		** we must have just read ourselves in.  
		** So we will get the corresponding schema
		** descriptor from the data dictionary.
		*/
    SchemaDescriptor sd = dd.getSchemaDescriptor(schemaName, tc, true);
    /* Get the table descriptor. */
    /* See if we can get the TableDescriptor 
		 * from the Activation.  (Will be there
		 * for backing indexes.)
		 */
    td = activation.getDDLTableDescriptor();
    if (td == null) {
        /* tableId will be non-null if adding an index to
			 * an existing table (as opposed to creating a
			 * table with a constraint with a backing index).
			 */
        if (tableId != null) {
            td = dd.getTableDescriptor(tableId);
        } else {
            td = dd.getTableDescriptor(tableName, sd, tc);
        }
    }
    if (td == null) {
        throw StandardException.newException(SQLState.LANG_CREATE_INDEX_NO_TABLE, indexName, tableName);
    }
    if (td.getTableType() == TableDescriptor.SYSTEM_TABLE_TYPE) {
        throw StandardException.newException(SQLState.LANG_CREATE_SYSTEM_INDEX_ATTEMPTED, indexName, tableName);
    }
    /* Get a shared table lock on the table. We need to lock table before
		 * invalidate dependents, otherwise, we may interfere with the
		 * compilation/re-compilation of DML/DDL.  See beetle 4325 and $WS/
		 * docs/language/SolutionsToConcurrencyIssues.txt (point f).
		 */
    lockTableForDDL(tc, td.getHeapConglomerateId(), false);
    // depended on this table (including this one)
    if (!forCreateTable) {
        dm.invalidateFor(td, DependencyManager.CREATE_INDEX, lcc);
    }
    // Translate the base column names to column positions
    baseColumnPositions = new int[columnNames.length];
    for (int i = 0; i < columnNames.length; i++) {
        // Look up the column in the data dictionary
        columnDescriptor = td.getColumnDescriptor(columnNames[i]);
        if (columnDescriptor == null) {
            throw StandardException.newException(SQLState.LANG_COLUMN_NOT_FOUND_IN_TABLE, columnNames[i], tableName);
        }
        TypeId typeId = columnDescriptor.getType().getTypeId();
        // Don't allow a column to be created on a non-orderable type
        ClassFactory cf = lcc.getLanguageConnectionFactory().getClassFactory();
        boolean isIndexable = typeId.orderable(cf);
        if (isIndexable && typeId.userType()) {
            String userClass = typeId.getCorrespondingJavaTypeName();
            // run the compare method.
            try {
                if (cf.isApplicationClass(cf.loadApplicationClass(userClass)))
                    isIndexable = false;
            } catch (ClassNotFoundException cnfe) {
                // shouldn't happen as we just check the class is orderable
                isIndexable = false;
            }
        }
        if (!isIndexable) {
            throw StandardException.newException(SQLState.LANG_COLUMN_NOT_ORDERABLE_DURING_EXECUTION, typeId.getSQLTypeName());
        }
        // Remember the position in the base table of each column
        baseColumnPositions[i] = columnDescriptor.getPosition();
        if (maxBaseColumnPosition < baseColumnPositions[i])
            maxBaseColumnPosition = baseColumnPositions[i];
    }
    /* The code below tries to determine if the index that we're about
		 * to create can "share" a conglomerate with an existing index.
		 * If so, we will use a single physical conglomerate--namely, the
		 * one that already exists--to support both indexes. I.e. we will
		 * *not* create a new conglomerate as part of this constant action.
         *
         * Deferrable constraints are backed by indexes that are *not* shared
         * since they use physically non-unique indexes and as such are
         * different from indexes used to represent non-deferrable
         * constraints.
		 */
    // check if we have similar indices already for this table
    ConglomerateDescriptor[] congDescs = td.getConglomerateDescriptors();
    boolean shareExisting = false;
    for (int i = 0; i < congDescs.length; i++) {
        ConglomerateDescriptor cd = congDescs[i];
        if (!cd.isIndex())
            continue;
        if (droppedConglomNum == cd.getConglomerateNumber()) {
            /* We can't share with any conglomerate descriptor
				 * whose conglomerate number matches the dropped
				 * conglomerate number, because that descriptor's
				 * backing conglomerate was dropped, as well.  If
				 * we're going to share, we have to share with a
				 * descriptor whose backing physical conglomerate
				 * is still around.
				 */
            continue;
        }
        IndexRowGenerator irg = cd.getIndexDescriptor();
        int[] bcps = irg.baseColumnPositions();
        boolean[] ia = irg.isAscending();
        int j = 0;
        /* The conditions which allow an index to share an existing
			 * conglomerate are as follows:
			 *
			 * 1. the set of columns (both key and include columns) and their 
			 *  order in the index is the same as that of an existing index AND 
			 *
			 * 2. the ordering attributes are the same AND 
			 *
			 * 3. one of the following is true:
			 *    a) the existing index is unique, OR
			 *    b) the existing index is non-unique with uniqueWhenNotNulls
			 *       set to TRUE and the index being created is non-unique, OR
			 *    c) both the existing index and the one being created are
			 *       non-unique and have uniqueWithDuplicateNulls set to FALSE.
             *
             * 4. hasDeferrableChecking is FALSE.
             */
        boolean possibleShare = (irg.isUnique() || !unique) && (bcps.length == baseColumnPositions.length) && !hasDeferrableChecking;
        // is set to true (backing index for unique constraint)
        if (possibleShare && !irg.isUnique()) {
            /* If the existing index has uniqueWithDuplicateNulls set to
				 * TRUE it can be shared by other non-unique indexes; otherwise
				 * the existing non-unique index has uniqueWithDuplicateNulls
				 * set to FALSE, which means the new non-unique conglomerate
				 * can only share if it has uniqueWithDuplicateNulls set to
				 * FALSE, as well.
				 */
            possibleShare = (irg.isUniqueWithDuplicateNulls() || !uniqueWithDuplicateNulls);
        }
        if (possibleShare && indexType.equals(irg.indexType())) {
            for (; j < bcps.length; j++) {
                if ((bcps[j] != baseColumnPositions[j]) || (ia[j] != isAscending[j]))
                    break;
            }
        }
        if (// share
        j == baseColumnPositions.length) {
            /*
				 * Don't allow users to create a duplicate index. Allow if being done internally
				 * for a constraint
				 */
            if (!isConstraint) {
                activation.addWarning(StandardException.newWarning(SQLState.LANG_INDEX_DUPLICATE, indexName, cd.getConglomerateName()));
                return;
            }
            /* Sharing indexes share the physical conglomerate
				 * underneath, so pull the conglomerate number from
				 * the existing conglomerate descriptor.
				 */
            conglomId = cd.getConglomerateNumber();
            /* We create a new IndexRowGenerator because certain
				 * attributes--esp. uniqueness--may be different between
				 * the index we're creating and the conglomerate that
				 * already exists.  I.e. even though we're sharing a
				 * conglomerate, the new index is not necessarily
				 * identical to the existing conglomerate. We have to
				 * keep track of that info so that if we later drop
				 * the shared physical conglomerate, we can figure out
				 * what this index (the one we're creating now) is
				 * really supposed to look like.
				 */
            indexRowGenerator = new IndexRowGenerator(indexType, unique, uniqueWithDuplicateNulls, // uniqueDeferrable
            false, // deferrable indexes are not shared
            false, baseColumnPositions, isAscending, baseColumnPositions.length);
            // DERBY-655 and DERBY-1343
            // Sharing indexes will have unique logical conglomerate UUIDs.
            conglomerateUUID = dd.getUUIDFactory().createUUID();
            shareExisting = true;
            break;
        }
    }
    /* If we have a droppedConglomNum then the index we're about to
		 * "create" already exists--i.e. it has an index descriptor and
		 * the corresponding information is already in the system catalogs.
		 * The only thing we're missing, then, is the physical conglomerate
		 * to back the index (because the old conglomerate was dropped).
		 */
    boolean alreadyHaveConglomDescriptor = (droppedConglomNum > -1L);
    /* If this index already has an essentially same one, we share the
		 * conglomerate with the old one, and just simply add a descriptor
		 * entry into SYSCONGLOMERATES--unless we already have a descriptor,
		 * in which case we don't even need to do that.
		 */
    DataDescriptorGenerator ddg = dd.getDataDescriptorGenerator();
    if (shareExisting && !alreadyHaveConglomDescriptor) {
        ConglomerateDescriptor cgd = ddg.newConglomerateDescriptor(conglomId, indexName, true, indexRowGenerator, isConstraint, conglomerateUUID, td.getUUID(), sd.getUUID());
        dd.addDescriptor(cgd, sd, DataDictionary.SYSCONGLOMERATES_CATALOG_NUM, false, tc);
        // add newly added conglomerate to the list of conglomerate
        // descriptors in the td.
        ConglomerateDescriptorList cdl = td.getConglomerateDescriptorList();
        cdl.add(cgd);
    // can't just return yet, need to get member "indexTemplateRow"
    // because create constraint may use it
    }
    // Describe the properties of the index to the store using Properties
    // RESOLVE: The following properties assume a BTREE index.
    Properties indexProperties;
    if (properties != null) {
        indexProperties = properties;
    } else {
        indexProperties = new Properties();
    }
    // Tell it the conglomerate id of the base table
    indexProperties.put("baseConglomerateId", Long.toString(td.getHeapConglomerateId()));
    if (uniqueWithDuplicateNulls && !hasDeferrableChecking) {
        if (dd.checkVersion(DataDictionary.DD_VERSION_DERBY_10_4, null)) {
            indexProperties.put("uniqueWithDuplicateNulls", Boolean.toString(true));
        } else {
            // index creating a unique index instead.
            if (uniqueWithDuplicateNulls) {
                unique = true;
            }
        }
    }
    // All indexes are unique because they contain the RowLocation.
    // The number of uniqueness columns must include the RowLocation
    // if the user did not specify a unique index.
    indexProperties.put("nUniqueColumns", Integer.toString(unique ? baseColumnPositions.length : baseColumnPositions.length + 1));
    // By convention, the row location column is the last column
    indexProperties.put("rowLocationColumn", Integer.toString(baseColumnPositions.length));
    // For now, all columns are key fields, including the RowLocation
    indexProperties.put("nKeyFields", Integer.toString(baseColumnPositions.length + 1));
    // For now, assume that all index columns are ordered columns
    if (!shareExisting) {
        if (dd.checkVersion(DataDictionary.DD_VERSION_DERBY_10_4, null)) {
            indexRowGenerator = new IndexRowGenerator(indexType, unique, uniqueWithDuplicateNulls, uniqueDeferrable, (hasDeferrableChecking && constraintType != DataDictionary.FOREIGNKEY_CONSTRAINT), baseColumnPositions, isAscending, baseColumnPositions.length);
        } else {
            indexRowGenerator = new IndexRowGenerator(indexType, unique, false, false, false, baseColumnPositions, isAscending, baseColumnPositions.length);
        }
    }
    /* Now add the rows from the base table to the conglomerate.
		 * We do this by scanning the base table and inserting the
		 * rows into a sorter before inserting from the sorter
		 * into the index.  This gives us better performance
		 * and a more compact index.
		 */
    rowSource = null;
    sortId = 0;
    // set to true once the sorter is created
    boolean needToDropSort = false;
    /* bulkFetchSIze will be 16 (for now) unless
		 * we are creating the table in which case it
		 * will be 1.  Too hard to remove scan when
		 * creating index on new table, so minimize
		 * work where we can.
		 */
    int bulkFetchSize = (forCreateTable) ? 1 : 16;
    int numColumns = td.getNumberOfColumns();
    int approximateRowSize = 0;
    // Create the FormatableBitSet for mapping the partial to full base row
    FormatableBitSet bitSet = new FormatableBitSet(numColumns + 1);
    for (int index = 0; index < baseColumnPositions.length; index++) {
        bitSet.set(baseColumnPositions[index]);
    }
    FormatableBitSet zeroBasedBitSet = RowUtil.shift(bitSet, 1);
    // Start by opening a full scan on the base table.
    scan = tc.openGroupFetchScan(td.getHeapConglomerateId(), // hold
    false, // open base table read only
    0, TransactionController.MODE_TABLE, TransactionController.ISOLATION_SERIALIZABLE, // all fields as objects
    zeroBasedBitSet, // startKeyValue
    (DataValueDescriptor[]) null, // not used when giving null start posn.
    0, // qualifier
    null, // stopKeyValue
    (DataValueDescriptor[]) null, // not used when giving null stop posn.
    0);
    // Create an array to put base row template
    baseRows = new ExecRow[bulkFetchSize];
    indexRows = new ExecIndexRow[bulkFetchSize];
    compactBaseRows = new ExecRow[bulkFetchSize];
    try {
        // Create the array of base row template
        for (int i = 0; i < bulkFetchSize; i++) {
            // create a base row template
            baseRows[i] = activation.getExecutionFactory().getValueRow(maxBaseColumnPosition);
            // create an index row template
            indexRows[i] = indexRowGenerator.getIndexRowTemplate();
            // create a compact base row template
            compactBaseRows[i] = activation.getExecutionFactory().getValueRow(baseColumnPositions.length);
        }
        indexTemplateRow = indexRows[0];
        // Fill the partial row with nulls of the correct type
        ColumnDescriptorList cdl = td.getColumnDescriptorList();
        int cdlSize = cdl.size();
        for (int index = 0, numSet = 0; index < cdlSize; index++) {
            if (!zeroBasedBitSet.get(index)) {
                continue;
            }
            numSet++;
            ColumnDescriptor cd = cdl.elementAt(index);
            DataTypeDescriptor dts = cd.getType();
            for (int i = 0; i < bulkFetchSize; i++) {
                // Put the column in both the compact and sparse base rows
                baseRows[i].setColumn(index + 1, dts.getNull());
                compactBaseRows[i].setColumn(numSet, baseRows[i].getColumn(index + 1));
            }
            // Calculate the approximate row size for the index row
            approximateRowSize += dts.getTypeId().getApproximateLengthInBytes(dts);
        }
        // Get an array of RowLocation template
        RowLocation[] rl = new RowLocation[bulkFetchSize];
        for (int i = 0; i < bulkFetchSize; i++) {
            rl[i] = scan.newRowLocationTemplate();
            // Get an index row based on the base row
            indexRowGenerator.getIndexRow(compactBaseRows[i], rl[i], indexRows[i], bitSet);
        }
        /* now that we got indexTemplateRow, done for sharing index
			 */
        if (shareExisting)
            return;
        /* For non-unique indexes, we order by all columns + the RID.
			 * For unique indexes, we just order by the columns.
			 * We create a unique index observer for unique indexes
			 * so that we can catch duplicate key.
			 * We create a basic sort observer for non-unique indexes
			 * so that we can reuse the wrappers during an external
			 * sort.
			 */
        int numColumnOrderings;
        SortObserver sortObserver;
        Properties sortProperties = null;
        if (unique || uniqueWithDuplicateNulls || uniqueDeferrable) {
            // if the index is a constraint, use constraintname in
            // possible error message
            String indexOrConstraintName = indexName;
            if (conglomerateUUID != null) {
                ConglomerateDescriptor cd = dd.getConglomerateDescriptor(conglomerateUUID);
                if ((isConstraint) && (cd != null && cd.getUUID() != null && td != null)) {
                    ConstraintDescriptor conDesc = dd.getConstraintDescriptor(td, cd.getUUID());
                    indexOrConstraintName = conDesc.getConstraintName();
                }
            }
            if (unique || uniqueDeferrable) {
                numColumnOrderings = unique ? baseColumnPositions.length : baseColumnPositions.length + 1;
                sortObserver = new UniqueIndexSortObserver(lcc, constraintID, true, uniqueDeferrable, initiallyDeferred, indexOrConstraintName, indexTemplateRow, true, td.getName());
            } else {
                // unique with duplicate nulls allowed.
                numColumnOrderings = baseColumnPositions.length + 1;
                // tell transaction controller to use the unique with
                // duplicate nulls sorter, when making createSort() call.
                sortProperties = new Properties();
                sortProperties.put(AccessFactoryGlobals.IMPL_TYPE, AccessFactoryGlobals.SORT_UNIQUEWITHDUPLICATENULLS_EXTERNAL);
                // use sort operator which treats nulls unequal
                sortObserver = new UniqueWithDuplicateNullsIndexSortObserver(lcc, constraintID, true, (hasDeferrableChecking && constraintType != DataDictionary.FOREIGNKEY_CONSTRAINT), initiallyDeferred, indexOrConstraintName, indexTemplateRow, true, td.getName());
            }
        } else {
            numColumnOrderings = baseColumnPositions.length + 1;
            sortObserver = new BasicSortObserver(true, false, indexTemplateRow, true);
        }
        ColumnOrdering[] order = new ColumnOrdering[numColumnOrderings];
        for (int i = 0; i < numColumnOrderings; i++) {
            order[i] = new IndexColumnOrder(i, unique || i < numColumnOrderings - 1 ? isAscending[i] : true);
        }
        // create the sorter
        sortId = tc.createSort(sortProperties, indexTemplateRow.getRowArrayClone(), order, sortObserver, // not in order
        false, scan.getEstimatedRowCount(), // est row size, -1 means no idea
        approximateRowSize);
        needToDropSort = true;
        // Populate sorter and get the output of the sorter into a row
        // source.  The sorter has the indexed columns only and the columns
        // are in the correct order.
        rowSource = loadSorter(baseRows, indexRows, tc, scan, sortId, rl);
        conglomId = tc.createAndLoadConglomerate(indexType, // index row template
        indexTemplateRow.getRowArray(), // colums sort order
        order, indexRowGenerator.getColumnCollationIds(td.getColumnDescriptorList()), indexProperties, // not temporary
        TransactionController.IS_DEFAULT, rowSource, (long[]) null);
    } finally {
        /* close the table scan */
        if (scan != null)
            scan.close();
        /* close the sorter row source before throwing exception */
        if (rowSource != null)
            rowSource.closeRowSource();
        /*
			** drop the sort so that intermediate external sort run can be
			** removed from disk
			*/
        if (needToDropSort)
            tc.dropSort(sortId);
    }
    ConglomerateController indexController = tc.openConglomerate(conglomId, false, 0, TransactionController.MODE_TABLE, TransactionController.ISOLATION_SERIALIZABLE);
    // Check to make sure that the conglomerate can be used as an index
    if (!indexController.isKeyed()) {
        indexController.close();
        throw StandardException.newException(SQLState.LANG_NON_KEYED_INDEX, indexName, indexType);
    }
    indexController.close();
    // 
    if (!alreadyHaveConglomDescriptor) {
        ConglomerateDescriptor cgd = ddg.newConglomerateDescriptor(conglomId, indexName, true, indexRowGenerator, isConstraint, conglomerateUUID, td.getUUID(), sd.getUUID());
        dd.addDescriptor(cgd, sd, DataDictionary.SYSCONGLOMERATES_CATALOG_NUM, false, tc);
        // add newly added conglomerate to the list of conglomerate
        // descriptors in the td.
        ConglomerateDescriptorList cdl = td.getConglomerateDescriptorList();
        cdl.add(cgd);
        /* Since we created a new conglomerate descriptor, load
			 * its UUID into the corresponding field, to ensure that
			 * it is properly set in the StatisticsDescriptor created
			 * below.
			 */
        conglomerateUUID = cgd.getUUID();
    }
    CardinalityCounter cCount = (CardinalityCounter) rowSource;
    long numRows = cCount.getRowCount();
    if (addStatistics(dd, indexRowGenerator, numRows)) {
        long[] c = cCount.getCardinality();
        for (int i = 0; i < c.length; i++) {
            StatisticsDescriptor statDesc = new StatisticsDescriptor(dd, dd.getUUIDFactory().createUUID(), conglomerateUUID, td.getUUID(), "I", new StatisticsImpl(numRows, c[i]), i + 1);
            dd.addDescriptor(statDesc, null, DataDictionary.SYSSTATISTICS_CATALOG_NUM, true, tc);
        }
    }
}
Also used : ClassFactory(org.apache.derby.iapi.services.loader.ClassFactory) DataTypeDescriptor(org.apache.derby.iapi.types.DataTypeDescriptor) ColumnOrdering(org.apache.derby.iapi.store.access.ColumnOrdering) ConglomerateController(org.apache.derby.iapi.store.access.ConglomerateController) DependencyManager(org.apache.derby.iapi.sql.depend.DependencyManager) Properties(java.util.Properties) RowLocationRetRowSource(org.apache.derby.iapi.store.access.RowLocationRetRowSource) DataDescriptorGenerator(org.apache.derby.iapi.sql.dictionary.DataDescriptorGenerator) IndexRowGenerator(org.apache.derby.iapi.sql.dictionary.IndexRowGenerator) ColumnDescriptorList(org.apache.derby.iapi.sql.dictionary.ColumnDescriptorList) ConglomerateDescriptorList(org.apache.derby.iapi.sql.dictionary.ConglomerateDescriptorList) FormatableBitSet(org.apache.derby.iapi.services.io.FormatableBitSet) UUID(org.apache.derby.catalog.UUID) RowLocation(org.apache.derby.iapi.types.RowLocation) TypeId(org.apache.derby.iapi.types.TypeId) StatisticsDescriptor(org.apache.derby.iapi.sql.dictionary.StatisticsDescriptor) SchemaDescriptor(org.apache.derby.iapi.sql.dictionary.SchemaDescriptor) ColumnDescriptor(org.apache.derby.iapi.sql.dictionary.ColumnDescriptor) GroupFetchScanController(org.apache.derby.iapi.store.access.GroupFetchScanController) DataDictionary(org.apache.derby.iapi.sql.dictionary.DataDictionary) ExecIndexRow(org.apache.derby.iapi.sql.execute.ExecIndexRow) ConglomerateDescriptor(org.apache.derby.iapi.sql.dictionary.ConglomerateDescriptor) TableDescriptor(org.apache.derby.iapi.sql.dictionary.TableDescriptor) SortObserver(org.apache.derby.iapi.store.access.SortObserver) StatisticsImpl(org.apache.derby.catalog.types.StatisticsImpl) LanguageConnectionContext(org.apache.derby.iapi.sql.conn.LanguageConnectionContext) ConstraintDescriptor(org.apache.derby.iapi.sql.dictionary.ConstraintDescriptor) ExecRow(org.apache.derby.iapi.sql.execute.ExecRow) TransactionController(org.apache.derby.iapi.store.access.TransactionController)

Example 38 with DependencyManager

use of org.apache.derby.iapi.sql.depend.DependencyManager in project derby by apache.

the class BaseActivation method close.

/**
 *		Closing an activation marks it as unusable. Any other
 *		requests made on it will fail.  An activation should be
 *		marked closed when it is expected to not be used any longer,
 *		i.e. when the connection for it is closed, or it has suffered some
 *		sort of severe error.
 *
 *		This should also remove it from the language connection context.
 *
 *		@exception StandardException on error
 */
public final void close() throws StandardException {
    if (!closed) {
        // markUnused();
        // we call reset so that if the actual type of "this"
        // is a subclass of BaseActivation, its cleanup will
        // also happen -- reset in the actual type is called,
        // not reset in BaseActivation.  Subclass reset's
        // are supposed to call super.reset() as well.
        // get everything related to executing released
        reset();
        if (resultSet != null) {
            // Finish the resultSet, it will never be used again.
            resultSet.finish();
            resultSet = null;
        }
        closed = true;
        // Remove all the dependencies this activation has. It won't need
        // them after it's closed, so let's free up the memory in the
        // dependency manager. (DERBY-4571)
        DependencyManager dm = lcc.getDataDictionary().getDependencyManager();
        dm.clearDependencies(lcc, this);
        lcc.removeActivation(this);
        if (preStmt != null) {
            preStmt.finish(lcc);
            preStmt = null;
        }
        try {
            closeActivationAction();
        } catch (Throwable e) {
            throw StandardException.plainWrapException(e);
        }
    }
}
Also used : DependencyManager(org.apache.derby.iapi.sql.depend.DependencyManager)

Example 39 with DependencyManager

use of org.apache.derby.iapi.sql.depend.DependencyManager in project derby by apache.

the class DDLConstantAction method storeViewTriggerDependenciesOnPrivileges.

/**
 *	This method saves dependencies of views and triggers on privileges in
 *  the dependency system. It gets called by CreateViewConstantAction
 *  and CreateTriggerConstantAction. Views and triggers and constraints
 *  run with definer's privileges. If one of the required privileges is
 *  revoked from the definer, the dependent view/trigger/constraint on
 *  that privilege will be dropped automatically. In order to implement
 *  this behavior, we need to save view/trigger/constraint dependencies
 *  on required privileges in the dependency system. Following method
 *  accomplishes that part of the equation for views and triggers. The
 *  dependency collection for constraints is not same as for views and
 *  triggers and hence constraints are not covered by this method.
 *  Views and triggers can depend on many different kind of privileges
 *  where as constraints only depend on REFERENCES privilege on a table.
 *  Another difference is only one view or trigger can be defined by a
 *  sql statement and hence all the dependencies collected for the sql
 *  statement apply to the view or trigger in question. As for constraints,
 *  one sql statement can defined multiple constraints and hence the
 *  all the privileges required by the statement are not necessarily
 *  required by all the constraints defined by that sql statement. We need
 *  to identify right privileges for right constraints for a given sql
 *  statement. Because of these differences between constraints and views
 *  (and triggers), there are 2 different methods in this class to save
 *  their privileges in the dependency system.
 *
 *  For each required privilege, we now register of a dependency on a role
 *  if that role was required to find an applicable privilege.
 *
 *  @param activation The execution environment for this constant action.
 *  @param dependent Make this object depend on required privileges
 *
 * @exception StandardException		Thrown on failure
 */
protected void storeViewTriggerDependenciesOnPrivileges(Activation activation, Dependent dependent) throws StandardException {
    LanguageConnectionContext lcc = activation.getLanguageConnectionContext();
    DataDictionary dd = lcc.getDataDictionary();
    DependencyManager dm = dd.getDependencyManager();
    String dbo = dd.getAuthorizationDatabaseOwner();
    String currentUser = lcc.getCurrentUserId(activation);
    SettableBoolean roleDepAdded = new SettableBoolean();
    // access any objects without any restrictions.
    if (!currentUser.equals(dbo)) {
        PermissionsDescriptor permDesc;
        List<StatementPermission> requiredPermissionsList = activation.getPreparedStatement().getRequiredPermissionsList();
        if (requiredPermissionsList != null && !requiredPermissionsList.isEmpty()) {
            for (StatementPermission statPerm : requiredPermissionsList) {
                // Also, StatementRolePermission should not occur here.
                if (statPerm instanceof StatementSchemaPermission || statPerm instanceof StatementRolePermission) {
                    if (SanityManager.DEBUG) {
                        if (statPerm instanceof StatementRolePermission) {
                            SanityManager.THROWASSERT("Unexpected StatementRolePermission");
                        }
                    }
                    continue;
                }
                // See if we can find the required privilege for given authorizer?
                permDesc = statPerm.getPermissionDescriptor(currentUser, dd);
                if (// privilege not found for given authorizer
                permDesc == null) {
                    // The if condition above means that required privilege does
                    // not exist at the user level. The privilege has to exist at
                    // PUBLIC level... ,
                    permDesc = statPerm.getPermissionDescriptor(Authorizer.PUBLIC_AUTHORIZATION_ID, dd);
                    boolean roleUsed = false;
                    // .. or at role level
                    if (permDesc == null || ((permDesc instanceof ColPermsDescriptor) && !((StatementColumnPermission) statPerm).allColumnsCoveredByUserOrPUBLIC(currentUser, dd))) {
                        roleUsed = true;
                        permDesc = findRoleUsage(activation, statPerm);
                    }
                    // owner.
                    if (!permDesc.checkOwner(currentUser)) {
                        dm.addDependency(dependent, permDesc, lcc.getContextManager());
                        // dependency, too.
                        if (roleUsed) {
                            trackRoleDependency(activation, dependent, roleDepAdded);
                        }
                    }
                    continue;
                }
                // object's privilege dependency in the dependency system
                if (!permDesc.checkOwner(currentUser)) {
                    dm.addDependency(dependent, permDesc, lcc.getContextManager());
                    if (permDesc instanceof ColPermsDescriptor) {
                        // For a given table, the table owner can give privileges
                        // on some columns at individual user level and privileges
                        // on some columns at PUBLIC level. Hence, when looking for
                        // column level privileges, we need to look both at user
                        // level as well as PUBLIC level(only if user level column
                        // privileges do not cover all the columns accessed by this
                        // object). We have finished adding dependency for user level
                        // columns, now we are checking if some required column
                        // level privileges are at PUBLIC level.
                        // A specific eg of a view
                        // user1
                        // create table t11(c11 int, c12 int);
                        // grant select(c11) on t1 to user2;
                        // grant select(c12) on t1 to PUBLIC;
                        // user2
                        // create view v1 as select c11 from user1.t11 where c12=2;
                        // For the view above, there are 2 column level privilege
                        // depencies, one for column c11 which exists directly
                        // for user2 and one for column c12 which exists at PUBLIC level.
                        StatementColumnPermission statementColumnPermission = (StatementColumnPermission) statPerm;
                        permDesc = statementColumnPermission.getPUBLIClevelColPermsDescriptor(currentUser, dd);
                        if (permDesc != null && permDesc.getObjectID() != null) {
                            // User did not have all required column
                            // permissions and at least one column is
                            // covered by PUBLIC.
                            dm.addDependency(dependent, permDesc, lcc.getContextManager());
                        }
                        // upon?
                        if (!statementColumnPermission.allColumnsCoveredByUserOrPUBLIC(currentUser, dd)) {
                            trackRoleDependency(activation, dependent, roleDepAdded);
                        }
                    }
                }
            }
        }
    }
}
Also used : PermissionsDescriptor(org.apache.derby.iapi.sql.dictionary.PermissionsDescriptor) DependencyManager(org.apache.derby.iapi.sql.depend.DependencyManager) StatementSchemaPermission(org.apache.derby.iapi.sql.dictionary.StatementSchemaPermission) DataDictionary(org.apache.derby.iapi.sql.dictionary.DataDictionary) StatementColumnPermission(org.apache.derby.iapi.sql.dictionary.StatementColumnPermission) StatementPermission(org.apache.derby.iapi.sql.dictionary.StatementPermission) ColPermsDescriptor(org.apache.derby.iapi.sql.dictionary.ColPermsDescriptor) LanguageConnectionContext(org.apache.derby.iapi.sql.conn.LanguageConnectionContext) StatementRolePermission(org.apache.derby.iapi.sql.dictionary.StatementRolePermission)

Example 40 with DependencyManager

use of org.apache.derby.iapi.sql.depend.DependencyManager in project derby by apache.

the class DropConstraintConstantAction method executeConstantAction.

// INTERFACE METHODS
/**
 *	This is the guts of the Execution-time logic for DROP CONSTRAINT.
 *
 *	@see ConstantAction#executeConstantAction
 *
 * @exception StandardException		Thrown on failure
 */
public void executeConstantAction(Activation activation) throws StandardException {
    ConstraintDescriptor conDesc = null;
    TableDescriptor td;
    UUID indexId = null;
    String indexUUIDString;
    LanguageConnectionContext lcc = activation.getLanguageConnectionContext();
    DataDictionary dd = lcc.getDataDictionary();
    DependencyManager dm = dd.getDependencyManager();
    TransactionController tc = lcc.getTransactionExecute();
    /*
		** Inform the data dictionary that we are about to write to it.
		** There are several calls to data dictionary "get" methods here
		** that might be done in "read" mode in the data dictionary, but
		** it seemed safer to do this whole operation in "write" mode.
		**
		** We tell the data dictionary we're done writing at the end of
		** the transaction.
		*/
    dd.startWriting(lcc);
    td = dd.getTableDescriptor(tableId);
    if (td == null) {
        throw StandardException.newException(SQLState.LANG_TABLE_NOT_FOUND_DURING_EXECUTION, tableName);
    }
    /* Table gets locked in AlterTableConstantAction */
    /*
		** If the schema descriptor is null, then
		** we must have just read ourselves in.  
		** So we will get the corresponding schema
		** descriptor from the data dictionary.
		*/
    SchemaDescriptor tdSd = td.getSchemaDescriptor();
    SchemaDescriptor constraintSd = constraintSchemaName == null ? tdSd : dd.getSchemaDescriptor(constraintSchemaName, tc, true);
    /* Get the constraint descriptor for the index, along
		 * with an exclusive row lock on the row in sys.sysconstraints
		 * in order to ensure that no one else compiles against the
		 * index.
		 */
    if (// this means "alter table drop primary key"
    constraintName == null)
        conDesc = dd.getConstraintDescriptors(td).getPrimaryKey();
    else
        conDesc = dd.getConstraintDescriptorByName(td, constraintSd, constraintName, true);
    // Error if constraint doesn't exist
    if (conDesc == null) {
        String errorName = constraintName == null ? "PRIMARY KEY" : (constraintSd.getSchemaName() + "." + constraintName);
        throw StandardException.newException(SQLState.LANG_DROP_OR_ALTER_NON_EXISTING_CONSTRAINT, errorName, td.getQualifiedName());
    }
    switch(verifyType) {
        case DataDictionary.UNIQUE_CONSTRAINT:
            if (conDesc.getConstraintType() != verifyType)
                throw StandardException.newException(SQLState.LANG_DROP_CONSTRAINT_TYPE, constraintName, "UNIQUE");
            break;
        case DataDictionary.CHECK_CONSTRAINT:
            if (conDesc.getConstraintType() != verifyType)
                throw StandardException.newException(SQLState.LANG_DROP_CONSTRAINT_TYPE, constraintName, "CHECK");
            break;
        case DataDictionary.FOREIGNKEY_CONSTRAINT:
            if (conDesc.getConstraintType() != verifyType)
                throw StandardException.newException(SQLState.LANG_DROP_CONSTRAINT_TYPE, constraintName, "FOREIGN KEY");
            break;
    }
    boolean cascadeOnRefKey = (cascade && conDesc instanceof ReferencedKeyConstraintDescriptor);
    if (!cascadeOnRefKey) {
        dm.invalidateFor(conDesc, DependencyManager.DROP_CONSTRAINT, lcc);
    }
    /*
		** If we had a primary/unique key and it is drop cascade,	
		** drop all the referencing keys now.  We MUST do this AFTER
		** dropping the referenced key because otherwise we would
		** be repeatedly changing the reference count of the referenced
		** key and generating unnecessary I/O.
		*/
    dropConstraint(conDesc, activation, lcc, !cascadeOnRefKey);
    if (cascadeOnRefKey) {
        ForeignKeyConstraintDescriptor fkcd;
        ReferencedKeyConstraintDescriptor cd;
        ConstraintDescriptorList cdl;
        cd = (ReferencedKeyConstraintDescriptor) conDesc;
        cdl = cd.getForeignKeyConstraints(ReferencedKeyConstraintDescriptor.ALL);
        int cdlSize = cdl.size();
        for (int index = 0; index < cdlSize; index++) {
            fkcd = (ForeignKeyConstraintDescriptor) cdl.elementAt(index);
            dm.invalidateFor(fkcd, DependencyManager.DROP_CONSTRAINT, lcc);
            dropConstraint(fkcd, activation, lcc, true);
        }
        /*
			** We told dropConstraintAndIndex not to
			** remove our dependencies, so send an invalidate,
			** and drop the dependencies.
			*/
        dm.invalidateFor(conDesc, DependencyManager.DROP_CONSTRAINT, lcc);
        dm.clearDependencies(lcc, conDesc);
    }
}
Also used : SchemaDescriptor(org.apache.derby.iapi.sql.dictionary.SchemaDescriptor) DependencyManager(org.apache.derby.iapi.sql.depend.DependencyManager) ConstraintDescriptorList(org.apache.derby.iapi.sql.dictionary.ConstraintDescriptorList) DataDictionary(org.apache.derby.iapi.sql.dictionary.DataDictionary) ForeignKeyConstraintDescriptor(org.apache.derby.iapi.sql.dictionary.ForeignKeyConstraintDescriptor) TableDescriptor(org.apache.derby.iapi.sql.dictionary.TableDescriptor) LanguageConnectionContext(org.apache.derby.iapi.sql.conn.LanguageConnectionContext) ForeignKeyConstraintDescriptor(org.apache.derby.iapi.sql.dictionary.ForeignKeyConstraintDescriptor) ReferencedKeyConstraintDescriptor(org.apache.derby.iapi.sql.dictionary.ReferencedKeyConstraintDescriptor) ConstraintDescriptor(org.apache.derby.iapi.sql.dictionary.ConstraintDescriptor) ReferencedKeyConstraintDescriptor(org.apache.derby.iapi.sql.dictionary.ReferencedKeyConstraintDescriptor) UUID(org.apache.derby.catalog.UUID) TransactionController(org.apache.derby.iapi.store.access.TransactionController)

Aggregations

DependencyManager (org.apache.derby.iapi.sql.depend.DependencyManager)55 TransactionController (org.apache.derby.iapi.store.access.TransactionController)23 DataDictionary (org.apache.derby.iapi.sql.dictionary.DataDictionary)22 LanguageConnectionContext (org.apache.derby.iapi.sql.conn.LanguageConnectionContext)20 UUID (org.apache.derby.catalog.UUID)11 TableDescriptor (org.apache.derby.iapi.sql.dictionary.TableDescriptor)11 SchemaDescriptor (org.apache.derby.iapi.sql.dictionary.SchemaDescriptor)8 ContextManager (org.apache.derby.iapi.services.context.ContextManager)7 ColumnDescriptor (org.apache.derby.iapi.sql.dictionary.ColumnDescriptor)7 ConglomerateDescriptor (org.apache.derby.iapi.sql.dictionary.ConglomerateDescriptor)7 ConstraintDescriptor (org.apache.derby.iapi.sql.dictionary.ConstraintDescriptor)7 ProviderInfo (org.apache.derby.iapi.sql.depend.ProviderInfo)6 ReferencedKeyConstraintDescriptor (org.apache.derby.iapi.sql.dictionary.ReferencedKeyConstraintDescriptor)6 Provider (org.apache.derby.iapi.sql.depend.Provider)5 DataDescriptorGenerator (org.apache.derby.iapi.sql.dictionary.DataDescriptorGenerator)5 ProviderList (org.apache.derby.iapi.sql.depend.ProviderList)4 ColumnDescriptorList (org.apache.derby.iapi.sql.dictionary.ColumnDescriptorList)4 ConstraintDescriptorList (org.apache.derby.iapi.sql.dictionary.ConstraintDescriptorList)4 FormatableBitSet (org.apache.derby.iapi.services.io.FormatableBitSet)3 ForeignKeyConstraintDescriptor (org.apache.derby.iapi.sql.dictionary.ForeignKeyConstraintDescriptor)3