use of org.apache.flink.api.java.operators.IterativeDataSet in project flink-mirror by flink-ci.
the class BulkIterationTranslationTest method testCorrectTranslation.
@Test
public void testCorrectTranslation() {
final String jobName = "Test JobName";
final int numIterations = 13;
final int defaultParallelism = 133;
final int iterationParallelism = 77;
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
// ------------ construct the test program ------------------
{
env.setParallelism(defaultParallelism);
@SuppressWarnings("unchecked") DataSet<Tuple3<Double, Long, String>> initialDataSet = env.fromElements(new Tuple3<>(3.44, 5L, "abc"));
IterativeDataSet<Tuple3<Double, Long, String>> bulkIteration = initialDataSet.iterate(numIterations);
bulkIteration.setParallelism(iterationParallelism);
// test that multiple iteration consumers are supported
DataSet<Tuple3<Double, Long, String>> identity = bulkIteration.map(new IdentityMapper<Tuple3<Double, Long, String>>());
DataSet<Tuple3<Double, Long, String>> result = bulkIteration.closeWith(identity);
result.output(new DiscardingOutputFormat<Tuple3<Double, Long, String>>());
result.writeAsText("/dev/null");
}
Plan p = env.createProgramPlan(jobName);
// ------------- validate the plan ----------------
BulkIterationBase<?> iteration = (BulkIterationBase<?>) p.getDataSinks().iterator().next().getInput();
assertEquals(jobName, p.getJobName());
assertEquals(defaultParallelism, p.getDefaultParallelism());
assertEquals(iterationParallelism, iteration.getParallelism());
}
use of org.apache.flink.api.java.operators.IterativeDataSet in project flink by splunk.
the class DataSetAllroundTestProgram method main.
@SuppressWarnings("Convert2Lambda")
public static void main(String[] args) throws Exception {
// get parameters
ParameterTool params = ParameterTool.fromArgs(args);
int loadFactor = Integer.parseInt(params.getRequired("loadFactor"));
String outputPath = params.getRequired("outputPath");
boolean infinite = params.getBoolean("infinite", false);
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
int numKeys = loadFactor * 128 * 1024;
DataSet<Tuple2<String, Integer>> x1Keys;
DataSet<Tuple2<String, Integer>> x2Keys = env.createInput(Generator.generate(numKeys * 32, 2)).setParallelism(4);
DataSet<Tuple2<String, Integer>> x8Keys = env.createInput(Generator.generate(numKeys, 8)).setParallelism(4);
if (infinite) {
x1Keys = env.createInput(Generator.generateInfinitely(numKeys)).setParallelism(4);
} else {
x1Keys = env.createInput(Generator.generate(numKeys, 1)).setParallelism(4);
}
DataSet<Tuple2<String, Integer>> joined = x2Keys.map(x -> Tuple4.of("0-0", 0L, 1, x.f0)).returns(Types.TUPLE(Types.STRING, Types.LONG, Types.INT, Types.STRING)).join(x8Keys).where(3).equalTo(0).with((l, r) -> Tuple2.of(l.f3, 1)).returns(Types.TUPLE(Types.STRING, Types.INT)).groupBy(new KeySelector<Tuple2<String, Integer>, String>() {
@Override
public String getKey(Tuple2<String, Integer> value) {
return value.f0;
}
}).reduce((value1, value2) -> Tuple2.of(value1.f0, value1.f1 + value2.f1));
// co-group two datasets on their primary keys.
// we filter both inputs such that only 6.25% of the keys overlap.
// result: (key, cnt), #keys records with unique keys, cnt = (6.25%: 2, 93.75%: 1)
DataSet<Tuple2<String, Integer>> coGrouped = x1Keys.filter(x -> x.f1 > 59).coGroup(x1Keys.filter(x -> x.f1 < 68)).where("f0").equalTo("f0").with((CoGroupFunction<Tuple2<String, Integer>, Tuple2<String, Integer>, Tuple2<String, Integer>>) (l, r, out) -> {
int cnt = 0;
String key = "";
for (Tuple2<String, Integer> t : l) {
cnt++;
key = t.f0;
}
for (Tuple2<String, Integer> t : r) {
cnt++;
key = t.f0;
}
out.collect(Tuple2.of(key, cnt));
}).returns(Types.TUPLE(Types.STRING, Types.INT));
// join datasets on keys (1-1 join) and replicate by 16 (previously computed count)
// result: (key, cnt), 16 * #keys records, all keys preserved, cnt = (6.25%: 2, 93.75%: 1)
DataSet<Tuple2<String, Integer>> joined2 = joined.join(coGrouped, JoinOperatorBase.JoinHint.REPARTITION_SORT_MERGE).where(0).equalTo("f0").flatMap((FlatMapFunction<Tuple2<Tuple2<String, Integer>, Tuple2<String, Integer>>, Tuple2<String, Integer>>) (p, out) -> {
for (int i = 0; i < p.f0.f1; i++) {
out.collect(Tuple2.of(p.f0.f0, p.f1.f1));
}
}).returns(Types.TUPLE(Types.STRING, Types.INT));
// iteration. double the count field until all counts are at 32 or more
// result: (key, cnt), 16 * #keys records, all keys preserved, cnt = (6.25%: 64, 93.75%: 32)
IterativeDataSet<Tuple2<String, Integer>> initial = joined2.iterate(16);
DataSet<Tuple2<String, Integer>> iteration = initial.map(x -> Tuple2.of(x.f0, x.f1 * 2)).returns(Types.TUPLE(Types.STRING, Types.INT));
DataSet<Boolean> termination = iteration.flatMap((FlatMapFunction<Tuple2<String, Integer>, Boolean>) (x, out) -> {
if (x.f1 < 32) {
out.collect(false);
}
}).returns(Types.BOOLEAN);
DataSet<Tuple2<Integer, Integer>> result = initial.closeWith(iteration, termination).groupBy(1).reduceGroup((GroupReduceFunction<Tuple2<String, Integer>, Tuple2<Integer, Integer>>) (g, out) -> {
int key = 0;
int cnt = 0;
for (Tuple2<String, Integer> r : g) {
key = r.f1;
cnt++;
}
out.collect(Tuple2.of(key, cnt));
}).returns(Types.TUPLE(Types.INT, Types.INT)).map(x -> Tuple2.of(x.f0, x.f1 / (loadFactor * 128))).returns(Types.TUPLE(Types.INT, Types.INT));
// sort and emit result
result.sortPartition(0, Order.ASCENDING).setParallelism(1).writeAsText(outputPath, FileSystem.WriteMode.OVERWRITE).setParallelism(1);
env.execute();
}
use of org.apache.flink.api.java.operators.IterativeDataSet in project gradoop by dbs-leipzig.
the class CentroidFRLayouter method execute.
@Override
public LogicalGraph execute(LogicalGraph g) {
g = createInitialLayout(g);
DataSet<EPGMVertex> gradoopVertices = g.getVertices();
DataSet<EPGMEdge> gradoopEdges = g.getEdges();
DataSet<LVertex> vertices = gradoopVertices.map(LVertex::new);
DataSet<LEdge> edges = gradoopEdges.map(LEdge::new);
centroids = chooseInitialCentroids(vertices);
// flink can only iterate over one dataset at once. Create a dataset containing both
// centroids and vertices. Split them again at the begin of every iteration
DataSet<SimpleGraphElement> graphElements = vertices.map(x -> x);
graphElements = graphElements.union(centroids.map(x -> x));
IterativeDataSet<SimpleGraphElement> loop = graphElements.iterate(iterations);
vertices = loop.filter(x -> x instanceof LVertex).map(x -> (LVertex) x);
centroids = loop.filter(x -> x instanceof Centroid).map(x -> (Centroid) x);
centroids = calculateNewCentroids(centroids, vertices);
center = calculateLayoutCenter(vertices);
LGraph graph = new LGraph(vertices, edges);
// we have overridden repulsionForces() so layout() will use or new centroid-based solution
layout(graph);
graphElements = graph.getVertices().map(x -> x);
graphElements = graphElements.union(centroids.map(x -> x));
graphElements = loop.closeWith(graphElements);
vertices = graphElements.filter(x -> x instanceof LVertex).map(x -> (LVertex) x);
gradoopVertices = vertices.join(gradoopVertices).where(LVertex.ID_POSITION).equalTo(new Id<>()).with(new LVertexEPGMVertexJoinFunction());
return g.getFactory().fromDataSets(gradoopVertices, gradoopEdges);
}
use of org.apache.flink.api.java.operators.IterativeDataSet in project Alink by alibaba.
the class BisectingKMeansTrainBatchOp method linkFrom.
/**
* The bisecting kmeans algorithm has nested loops. In the outer loop, cluster centers
* are splited. In the inner loop, the splited centers are iteratively refined.
* However, there lacks nested loop semantic in Flink, so we have to flatten the nested loop
* in our implementation.
*/
@Override
public BisectingKMeansTrainBatchOp linkFrom(BatchOperator<?>... inputs) {
BatchOperator<?> in = checkAndGetFirst(inputs);
// get the input parameter's value
final DistanceType distanceType = getDistanceType();
final int k = this.getK();
final int maxIter = this.getMaxIter();
final String vectorColName = this.getVectorCol();
final int minDivisibleClusterSize = this.getMinDivisibleClusterSize();
ContinuousDistance distance = distanceType.getFastDistance();
Tuple2<DataSet<Vector>, DataSet<BaseVectorSummary>> vectorsAndStat = StatisticsHelper.summaryHelper(in, null, vectorColName);
DataSet<Integer> dim = vectorsAndStat.f1.map(new MapFunction<BaseVectorSummary, Integer>() {
private static final long serialVersionUID = 5358843841535961680L;
@Override
public Integer map(BaseVectorSummary value) {
Preconditions.checkArgument(value.count() > 0, "The train dataset is empty!");
return value.vectorSize();
}
});
// tuple: sampleId, features, assignment
DataSet<Tuple3<Long, Vector, Long>> initialAssignment = DataSetUtils.zipWithUniqueId(vectorsAndStat.f0).map(new RichMapFunction<Tuple2<Long, Vector>, Tuple3<Long, Vector, Long>>() {
private static final long serialVersionUID = -6036596630416015773L;
private int vectorSize;
@Override
public void open(Configuration params) {
vectorSize = (int) this.getRuntimeContext().getBroadcastVariable(VECTOR_SIZE).get(0);
}
@Override
public Tuple3<Long, Vector, Long> map(Tuple2<Long, Vector> value) {
if (value.f1 instanceof SparseVector) {
((SparseVector) value.f1).setSize(vectorSize);
}
return Tuple3.of(value.f0, value.f1, ROOT_INDEX);
}
}).withBroadcastSet(dim, VECTOR_SIZE);
DataSet<Tuple2<Long, ClusterSummary>> clustersSummaries = summary(initialAssignment.project(2, 1), dim, distanceType);
DataSet<Tuple3<Long, ClusterSummary, IterInfo>> clustersSummariesAndIterInfo = clustersSummaries.map(new MapFunction<Tuple2<Long, ClusterSummary>, Tuple3<Long, ClusterSummary, IterInfo>>() {
private static final long serialVersionUID = -3883958936263294331L;
@Override
public Tuple3<Long, ClusterSummary, IterInfo> map(Tuple2<Long, ClusterSummary> value) {
return Tuple3.of(value.f0, value.f1, new IterInfo(maxIter));
}
}).withForwardedFields("f0;f1");
IterativeDataSet<Tuple3<Long, ClusterSummary, IterInfo>> loop = clustersSummariesAndIterInfo.iterate(Integer.MAX_VALUE);
DataSet<Tuple1<IterInfo>> iterInfo = loop.<Tuple1<IterInfo>>project(2).first(1);
// Get all cluster summaries. Split clusters if at the first step of inner iterations.
DataSet<Tuple3<Long, ClusterSummary, IterInfo>> allClusters = getOrSplitClusters(loop, k, minDivisibleClusterSize, getRandomSeed());
DataSet<Long> divisibleClusterIndices = getDivisibleClusterIndices(allClusters);
DataSet<Tuple2<Long, DenseVector>> newClusterCenters = getNewClusterCenters(allClusters);
DataSet<Tuple3<Long, Vector, Long>> newAssignment = updateAssignment(initialAssignment, divisibleClusterIndices, newClusterCenters, distance, iterInfo);
DataSet<Tuple2<Long, ClusterSummary>> newClusterSummaries = summary(newAssignment.project(2, 1), dim, distanceType);
DataSet<Tuple3<Long, ClusterSummary, IterInfo>> updatedClusterSummariesWithIterInfo = updateClusterSummariesAndIterInfo(allClusters, newClusterSummaries);
DataSet<Integer> stopCriterion = iterInfo.flatMap(new FlatMapFunction<Tuple1<IterInfo>, Integer>() {
private static final long serialVersionUID = -4258243788034193744L;
@Override
public void flatMap(Tuple1<IterInfo> value, Collector<Integer> out) {
if (!(value.f0.atLastInnerIterStep() && value.f0.atLastBisectionStep())) {
out.collect(0);
}
}
});
DataSet<Tuple2<Long, ClusterSummary>> finalClusterSummaries = loop.closeWith(updatedClusterSummariesWithIterInfo, stopCriterion).project(0, 1);
DataSet<Row> modelRows = finalClusterSummaries.mapPartition(new SaveModel(distanceType, vectorColName, k)).withBroadcastSet(dim, VECTOR_SIZE).setParallelism(1);
this.setOutput(modelRows, new BisectingKMeansModelDataConverter().getModelSchema());
return this;
}
Aggregations