use of org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractBinaryJoinOperator in project asterixdb by apache.
the class RTreeAccessMethod method applyJoinPlanTransformation.
@Override
public boolean applyJoinPlanTransformation(Mutable<ILogicalOperator> joinRef, OptimizableOperatorSubTree leftSubTree, OptimizableOperatorSubTree rightSubTree, Index chosenIndex, AccessMethodAnalysisContext analysisCtx, IOptimizationContext context, boolean isLeftOuterJoin, boolean hasGroupBy) throws AlgebricksException {
// Determine if the index is applicable on the left or right side (if both, we arbitrarily prefer the left
// side).
Dataset dataset = analysisCtx.getDatasetFromIndexDatasetMap(chosenIndex);
OptimizableOperatorSubTree indexSubTree;
OptimizableOperatorSubTree probeSubTree;
// The following is just a sanity check.
if (rightSubTree.hasDataSourceScan() && dataset.getDatasetName().equals(rightSubTree.getDataset().getDatasetName())) {
indexSubTree = rightSubTree;
probeSubTree = leftSubTree;
} else {
return false;
}
LogicalVariable newNullPlaceHolderVar = null;
if (isLeftOuterJoin) {
// get a new null place holder variable that is the first field variable of the primary key
// from the indexSubTree's datasourceScanOp
newNullPlaceHolderVar = indexSubTree.getDataSourceVariables().get(0);
}
// TODO: We can probably do something smarter here based on selectivity or MBR area.
ILogicalOperator primaryIndexUnnestOp = createSecondaryToPrimaryPlan(indexSubTree, probeSubTree, chosenIndex, analysisCtx, true, isLeftOuterJoin, true, context);
if (primaryIndexUnnestOp == null) {
return false;
}
if (isLeftOuterJoin && hasGroupBy) {
// reset the null place holder variable
AccessMethodUtils.resetLOJNullPlaceholderVariableInGroupByOp(analysisCtx, newNullPlaceHolderVar, context);
}
indexSubTree.getDataSourceRef().setValue(primaryIndexUnnestOp);
// Change join into a select with the same condition.
AbstractBinaryJoinOperator joinOp = (AbstractBinaryJoinOperator) joinRef.getValue();
SelectOperator topSelect = new SelectOperator(joinOp.getCondition(), isLeftOuterJoin, newNullPlaceHolderVar);
topSelect.getInputs().add(indexSubTree.getRootRef());
topSelect.setExecutionMode(ExecutionMode.LOCAL);
context.computeAndSetTypeEnvironmentForOperator(topSelect);
// Replace the original join with the new subtree rooted at the select op.
joinRef.setValue(topSelect);
return true;
}
use of org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractBinaryJoinOperator in project asterixdb by apache.
the class IntroduceJoinAccessMethodRule method checkAndApplyJoinTransformation.
/**
* Recursively traverse the given plan and check whether a INNERJOIN or LEFTOUTERJOIN operator exists.
* If one is found, maintain the path from the root to the given join operator and
* optimize the path from the given join operator to the EMPTY_TUPLE_SOURCE operator
* if it is not already optimized.
*/
protected boolean checkAndApplyJoinTransformation(Mutable<ILogicalOperator> opRef, IOptimizationContext context) throws AlgebricksException {
AbstractLogicalOperator op = (AbstractLogicalOperator) opRef.getValue();
boolean joinFoundAndOptimizationApplied;
// Check the current operator pattern to see whether it is a JOIN or not.
boolean isThisOpInnerJoin = isInnerJoin(op);
boolean isThisOpLeftOuterJoin = isLeftOuterJoin(op);
boolean isParentOpGroupBy = hasGroupBy;
Mutable<ILogicalOperator> joinRefFromThisOp = null;
AbstractBinaryJoinOperator joinOpFromThisOp = null;
if (isThisOpInnerJoin) {
// Set join operator.
joinRef = opRef;
joinOp = (InnerJoinOperator) op;
joinRefFromThisOp = opRef;
joinOpFromThisOp = (InnerJoinOperator) op;
} else if (isThisOpLeftOuterJoin) {
// Set left-outer-join op.
// The current operator is GROUP and the child of this op is LEFTOUERJOIN.
joinRef = op.getInputs().get(0);
joinOp = (LeftOuterJoinOperator) joinRef.getValue();
joinRefFromThisOp = op.getInputs().get(0);
joinOpFromThisOp = (LeftOuterJoinOperator) joinRefFromThisOp.getValue();
}
// to make sure an earlier join in the path is optimized first.
for (Mutable<ILogicalOperator> inputOpRef : op.getInputs()) {
joinFoundAndOptimizationApplied = checkAndApplyJoinTransformation(inputOpRef, context);
if (joinFoundAndOptimizationApplied) {
return true;
}
}
// For a JOIN case, try to transform the given plan.
if (isThisOpInnerJoin || isThisOpLeftOuterJoin) {
// Restore the information from this operator since it might have been be set to null
// if there are other join operators in the earlier path.
joinRef = joinRefFromThisOp;
joinOp = joinOpFromThisOp;
boolean continueCheck = true;
// Already checked? If not, this operator may be optimized.
if (context.checkIfInDontApplySet(this, joinOp)) {
continueCheck = false;
}
// For each access method, this contains the information about
// whether an available index can be applicable or not.
Map<IAccessMethod, AccessMethodAnalysisContext> analyzedAMs = null;
if (continueCheck) {
analyzedAMs = new HashMap<>();
}
// whether the given plan is truly optimizable or not.
if (continueCheck && !checkJoinOpConditionAndInitSubTree(context)) {
continueCheck = false;
}
// Analyze the condition of SELECT operator and initialize analyzedAMs.
// Check whether the function in the SELECT operator can be truly transformed.
boolean matchInLeftSubTree = false;
boolean matchInRightSubTree = false;
if (continueCheck) {
if (leftSubTree.hasDataSource()) {
matchInLeftSubTree = analyzeSelectOrJoinOpConditionAndUpdateAnalyzedAM(joinCond, leftSubTree.getAssignsAndUnnests(), analyzedAMs, context, typeEnvironment);
}
if (rightSubTree.hasDataSource()) {
matchInRightSubTree = analyzeSelectOrJoinOpConditionAndUpdateAnalyzedAM(joinCond, rightSubTree.getAssignsAndUnnests(), analyzedAMs, context, typeEnvironment);
}
}
// Find the dataset from the data-source and the record type of the dataset from the metadata.
// This will be used to find an applicable index on the dataset.
boolean checkLeftSubTreeMetadata = false;
boolean checkRightSubTreeMetadata = false;
if (continueCheck && (matchInLeftSubTree || matchInRightSubTree)) {
// Set dataset and type metadata.
if (matchInLeftSubTree) {
checkLeftSubTreeMetadata = leftSubTree.setDatasetAndTypeMetadata(metadataProvider);
}
if (matchInRightSubTree) {
checkRightSubTreeMetadata = rightSubTree.setDatasetAndTypeMetadata(metadataProvider);
}
}
if (continueCheck && (checkLeftSubTreeMetadata || checkRightSubTreeMetadata)) {
// Then find the applicable indexes for the variables used in the JOIN condition.
if (checkLeftSubTreeMetadata) {
fillSubTreeIndexExprs(leftSubTree, analyzedAMs, context);
}
if (checkRightSubTreeMetadata) {
fillSubTreeIndexExprs(rightSubTree, analyzedAMs, context);
}
// Prune the access methods based on the function expression and access methods.
pruneIndexCandidates(analyzedAMs, context, typeEnvironment);
// If the right subtree (inner branch) has indexes, one of those indexes will be used.
// Remove the indexes from the outer branch in the optimizer's consideration list for this rule.
pruneIndexCandidatesFromOuterBranch(analyzedAMs);
// We are going to use indexes from the inner branch.
// If no index is available, then we stop here.
Pair<IAccessMethod, Index> chosenIndex = chooseBestIndex(analyzedAMs);
if (chosenIndex == null) {
context.addToDontApplySet(this, joinOp);
continueCheck = false;
}
if (continueCheck) {
// Apply plan transformation using chosen index.
AccessMethodAnalysisContext analysisCtx = analyzedAMs.get(chosenIndex.first);
// in GroupByOp.
if (isThisOpLeftOuterJoin && isParentOpGroupBy) {
analysisCtx.setLOJGroupbyOpRef(opRef);
ScalarFunctionCallExpression isNullFuncExpr = AccessMethodUtils.findLOJIsMissingFuncInGroupBy((GroupByOperator) opRef.getValue());
analysisCtx.setLOJIsNullFuncInGroupBy(isNullFuncExpr);
}
Dataset indexDataset = analysisCtx.getDatasetFromIndexDatasetMap(chosenIndex.second);
// from the right subtree. The following is just a sanity check.
if (!rightSubTree.hasDataSourceScan() && !indexDataset.getDatasetName().equals(rightSubTree.getDataset().getDatasetName())) {
return false;
}
// Finally, try to apply plan transformation using chosen index.
boolean res = chosenIndex.first.applyJoinPlanTransformation(joinRef, leftSubTree, rightSubTree, chosenIndex.second, analysisCtx, context, isThisOpLeftOuterJoin, isParentOpGroupBy);
// will find them.
if (res) {
return res;
}
}
}
joinRef = null;
joinOp = null;
}
return false;
}
use of org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractBinaryJoinOperator in project asterixdb by apache.
the class InvertedIndexAccessMethod method applyJoinPlanTransformation.
@Override
public boolean applyJoinPlanTransformation(Mutable<ILogicalOperator> joinRef, OptimizableOperatorSubTree leftSubTree, OptimizableOperatorSubTree rightSubTree, Index chosenIndex, AccessMethodAnalysisContext analysisCtx, IOptimizationContext context, boolean isLeftOuterJoin, boolean hasGroupBy) throws AlgebricksException {
// Figure out if the index is applicable on the left or right side (if both, we arbitrarily prefer the left side).
Dataset dataset = analysisCtx.getDatasetFromIndexDatasetMap(chosenIndex);
OptimizableOperatorSubTree indexSubTree;
OptimizableOperatorSubTree probeSubTree;
// The following is just a sanity check.
if (rightSubTree.hasDataSourceScan() && dataset.getDatasetName().equals(rightSubTree.getDataset().getDatasetName())) {
indexSubTree = rightSubTree;
probeSubTree = leftSubTree;
} else {
return false;
}
IOptimizableFuncExpr optFuncExpr = AccessMethodUtils.chooseFirstOptFuncExpr(chosenIndex, analysisCtx);
// if the dataset of index subtree and the dataset of first argument's subtree is the same
if (optFuncExpr.getFuncExpr().getFunctionIdentifier() == BuiltinFunctions.EDIT_DISTANCE_CONTAINS && optFuncExpr.getOperatorSubTree(0).getDataset() != null && !optFuncExpr.getOperatorSubTree(0).getDataset().getDatasetName().equals(indexSubTree.getDataset().getDatasetName())) {
return false;
}
//if LOJ, reset null place holder variable
LogicalVariable newNullPlaceHolderVar = null;
if (isLeftOuterJoin && hasGroupBy) {
//get a new null place holder variable that is the first field variable of the primary key
//from the indexSubTree's datasourceScanOp
newNullPlaceHolderVar = indexSubTree.getDataSourceVariables().get(0);
//reset the null place holder variable
AccessMethodUtils.resetLOJNullPlaceholderVariableInGroupByOp(analysisCtx, newNullPlaceHolderVar, context);
}
AbstractBinaryJoinOperator join = (AbstractBinaryJoinOperator) joinRef.getValue();
// Remember the original probe subtree, and its primary-key variables,
// so we can later retrieve the missing attributes via an equi join.
List<LogicalVariable> originalSubTreePKs = new ArrayList<>();
// Remember the primary-keys of the new probe subtree for the top-level equi join.
List<LogicalVariable> surrogateSubTreePKs = new ArrayList<>();
// Copy probe subtree, replacing their variables with new ones. We will use the original variables
// to stitch together a top-level equi join.
Mutable<ILogicalOperator> originalProbeSubTreeRootRef = copyAndReinitProbeSubTree(probeSubTree, join.getCondition().getValue(), optFuncExpr, originalSubTreePKs, surrogateSubTreePKs, context);
// Remember original live variables from the index sub tree.
List<LogicalVariable> indexSubTreeLiveVars = new ArrayList<>();
VariableUtilities.getLiveVariables(indexSubTree.getRoot(), indexSubTreeLiveVars);
// Clone the original join condition because we may have to modify it (and we also need the original).
ILogicalExpression joinCond = join.getCondition().getValue().cloneExpression();
// Create "panic" (non indexed) nested-loop join path if necessary.
Mutable<ILogicalOperator> panicJoinRef = null;
Map<LogicalVariable, LogicalVariable> panicVarMap = null;
if (optFuncExpr.getFuncExpr().getFunctionIdentifier() == BuiltinFunctions.EDIT_DISTANCE_CHECK || optFuncExpr.getFuncExpr().getFunctionIdentifier() == BuiltinFunctions.EDIT_DISTANCE_CONTAINS) {
panicJoinRef = new MutableObject<>(joinRef.getValue());
panicVarMap = new HashMap<>();
Mutable<ILogicalOperator> newProbeRootRef = createPanicNestedLoopJoinPlan(panicJoinRef, indexSubTree, probeSubTree, optFuncExpr, chosenIndex, panicVarMap, context);
probeSubTree.getRootRef().setValue(newProbeRootRef.getValue());
probeSubTree.setRoot(newProbeRootRef.getValue());
}
// Create regular indexed-nested loop join path.
ILogicalOperator indexPlanRootOp = createSecondaryToPrimaryPlan(null, indexSubTree, probeSubTree, chosenIndex, analysisCtx, true, isLeftOuterJoin, true, context);
indexSubTree.getDataSourceRef().setValue(indexPlanRootOp);
// Change join into a select with the same condition.
SelectOperator topSelect = new SelectOperator(new MutableObject<ILogicalExpression>(joinCond), isLeftOuterJoin, newNullPlaceHolderVar);
topSelect.getInputs().add(indexSubTree.getRootRef());
topSelect.setExecutionMode(ExecutionMode.LOCAL);
context.computeAndSetTypeEnvironmentForOperator(topSelect);
ILogicalOperator topOp = topSelect;
// Hook up the indexed-nested loop join path with the "panic" (non indexed) nested-loop join path by putting a union all on top.
if (panicJoinRef != null) {
LogicalVariable inputSearchVar = getInputSearchVar(optFuncExpr, indexSubTree);
indexSubTreeLiveVars.addAll(originalSubTreePKs);
indexSubTreeLiveVars.add(inputSearchVar);
List<LogicalVariable> panicPlanLiveVars = new ArrayList<>();
VariableUtilities.getLiveVariables(panicJoinRef.getValue(), panicPlanLiveVars);
// Create variable mapping for union all operator.
List<Triple<LogicalVariable, LogicalVariable, LogicalVariable>> varMap = new ArrayList<>();
for (int i = 0; i < indexSubTreeLiveVars.size(); i++) {
LogicalVariable indexSubTreeVar = indexSubTreeLiveVars.get(i);
LogicalVariable panicPlanVar = panicVarMap.get(indexSubTreeVar);
if (panicPlanVar == null) {
panicPlanVar = indexSubTreeVar;
}
varMap.add(new Triple<LogicalVariable, LogicalVariable, LogicalVariable>(indexSubTreeVar, panicPlanVar, indexSubTreeVar));
}
UnionAllOperator unionAllOp = new UnionAllOperator(varMap);
unionAllOp.getInputs().add(new MutableObject<ILogicalOperator>(topOp));
unionAllOp.getInputs().add(panicJoinRef);
unionAllOp.setExecutionMode(ExecutionMode.PARTITIONED);
context.computeAndSetTypeEnvironmentForOperator(unionAllOp);
topOp = unionAllOp;
}
// Place a top-level equi-join on top to retrieve the missing variables from the original probe subtree.
// The inner (build) branch of the join is the subtree with the data scan, since the result of the similarity join could potentially be big.
// This choice may not always be the most efficient, but it seems more robust than the alternative.
Mutable<ILogicalExpression> eqJoinConditionRef = createPrimaryKeysEqJoinCondition(originalSubTreePKs, surrogateSubTreePKs);
InnerJoinOperator topEqJoin = new InnerJoinOperator(eqJoinConditionRef, originalProbeSubTreeRootRef, new MutableObject<ILogicalOperator>(topOp));
topEqJoin.setExecutionMode(ExecutionMode.PARTITIONED);
joinRef.setValue(topEqJoin);
context.computeAndSetTypeEnvironmentForOperator(topEqJoin);
return true;
}
use of org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractBinaryJoinOperator in project asterixdb by apache.
the class PushSelectIntoJoinRule method rewritePost.
@Override
public boolean rewritePost(Mutable<ILogicalOperator> opRef, IOptimizationContext context) throws AlgebricksException {
Collection<LogicalVariable> joinLiveVarsLeft = new HashSet<LogicalVariable>();
Collection<LogicalVariable> joinLiveVarsRight = new HashSet<LogicalVariable>();
Collection<LogicalVariable> liveInOpsToPushLeft = new HashSet<LogicalVariable>();
Collection<LogicalVariable> liveInOpsToPushRight = new HashSet<LogicalVariable>();
List<ILogicalOperator> pushedOnLeft = new ArrayList<ILogicalOperator>();
List<ILogicalOperator> pushedOnRight = new ArrayList<ILogicalOperator>();
List<ILogicalOperator> pushedOnEither = new ArrayList<ILogicalOperator>();
LinkedList<ILogicalOperator> notPushedStack = new LinkedList<ILogicalOperator>();
Collection<LogicalVariable> usedVars = new HashSet<LogicalVariable>();
Collection<LogicalVariable> producedVars = new HashSet<LogicalVariable>();
AbstractLogicalOperator op = (AbstractLogicalOperator) opRef.getValue();
if (op.getOperatorTag() != LogicalOperatorTag.SELECT) {
return false;
}
SelectOperator select = (SelectOperator) op;
Mutable<ILogicalOperator> opRef2 = op.getInputs().get(0);
AbstractLogicalOperator son = (AbstractLogicalOperator) opRef2.getValue();
AbstractLogicalOperator op2 = son;
boolean needToPushOps = false;
while (son.isMap()) {
needToPushOps = true;
Mutable<ILogicalOperator> opRefLink = son.getInputs().get(0);
son = (AbstractLogicalOperator) opRefLink.getValue();
}
if (son.getOperatorTag() != LogicalOperatorTag.INNERJOIN && son.getOperatorTag() != LogicalOperatorTag.LEFTOUTERJOIN) {
return false;
}
boolean isLoj = son.getOperatorTag() == LogicalOperatorTag.LEFTOUTERJOIN;
AbstractBinaryJoinOperator join = (AbstractBinaryJoinOperator) son;
Mutable<ILogicalOperator> joinBranchLeftRef = join.getInputs().get(0);
Mutable<ILogicalOperator> joinBranchRightRef = join.getInputs().get(1);
if (needToPushOps) {
ILogicalOperator joinBranchLeft = joinBranchLeftRef.getValue();
ILogicalOperator joinBranchRight = joinBranchRightRef.getValue();
VariableUtilities.getLiveVariables(joinBranchLeft, joinLiveVarsLeft);
VariableUtilities.getLiveVariables(joinBranchRight, joinLiveVarsRight);
Mutable<ILogicalOperator> opIterRef = opRef2;
ILogicalOperator opIter = op2;
while (opIter != join) {
LogicalOperatorTag tag = ((AbstractLogicalOperator) opIter).getOperatorTag();
if (tag == LogicalOperatorTag.PROJECT) {
notPushedStack.addFirst(opIter);
} else {
VariableUtilities.getUsedVariables(opIter, usedVars);
VariableUtilities.getProducedVariables(opIter, producedVars);
if (usedVars.size() == 0) {
pushedOnEither.add(opIter);
} else if (joinLiveVarsLeft.containsAll(usedVars)) {
pushedOnLeft.add(opIter);
liveInOpsToPushLeft.addAll(producedVars);
} else if (joinLiveVarsRight.containsAll(usedVars)) {
pushedOnRight.add(opIter);
liveInOpsToPushRight.addAll(producedVars);
} else {
return false;
}
}
opIterRef = opIter.getInputs().get(0);
opIter = opIterRef.getValue();
}
if (isLoj && pushedOnLeft.isEmpty()) {
return false;
}
}
boolean intersectsAllBranches = true;
boolean[] intersectsBranch = new boolean[join.getInputs().size()];
LinkedList<LogicalVariable> selectVars = new LinkedList<LogicalVariable>();
select.getCondition().getValue().getUsedVariables(selectVars);
int i = 0;
for (Mutable<ILogicalOperator> branch : join.getInputs()) {
LinkedList<LogicalVariable> branchVars = new LinkedList<LogicalVariable>();
VariableUtilities.getLiveVariables(branch.getValue(), branchVars);
if (i == 0) {
branchVars.addAll(liveInOpsToPushLeft);
} else {
branchVars.addAll(liveInOpsToPushRight);
}
if (OperatorPropertiesUtil.disjoint(selectVars, branchVars)) {
intersectsAllBranches = false;
} else {
intersectsBranch[i] = true;
}
i++;
}
if (!intersectsBranch[0] && !intersectsBranch[1]) {
return false;
}
if (needToPushOps) {
//We should push independent ops into the first branch that the selection depends on
if (intersectsBranch[0]) {
pushOps(pushedOnEither, joinBranchLeftRef, context);
} else {
pushOps(pushedOnEither, joinBranchRightRef, context);
}
pushOps(pushedOnLeft, joinBranchLeftRef, context);
pushOps(pushedOnRight, joinBranchRightRef, context);
}
if (intersectsAllBranches) {
addCondToJoin(select, join, context);
} else {
// push down
Iterator<Mutable<ILogicalOperator>> branchIter = join.getInputs().iterator();
ILogicalExpression selectCondition = select.getCondition().getValue();
boolean lojToInner = false;
for (int j = 0; j < intersectsBranch.length; j++) {
Mutable<ILogicalOperator> branch = branchIter.next();
boolean inter = intersectsBranch[j];
if (!inter) {
continue;
}
// to inner join for this case.
if (j > 0 && isLoj && containsNotMissingFiltering(selectCondition)) {
lojToInner = true;
}
if ((j > 0 && isLoj) && containsMissingFiltering(selectCondition)) {
// Select "is-not-missing($$var)" cannot be pushed in the right branch of a LOJ;
notPushedStack.addFirst(select);
} else {
// Conditions for the left branch can always be pushed.
// Other conditions can be pushed to the right branch of a LOJ.
copySelectToBranch(select, branch, context);
}
}
if (lojToInner) {
// Rewrites left outer join to inner join.
InnerJoinOperator innerJoin = new InnerJoinOperator(join.getCondition());
innerJoin.getInputs().addAll(join.getInputs());
join = innerJoin;
context.computeAndSetTypeEnvironmentForOperator(join);
}
}
ILogicalOperator top = join;
for (ILogicalOperator npOp : notPushedStack) {
List<Mutable<ILogicalOperator>> npInpList = npOp.getInputs();
npInpList.clear();
npInpList.add(new MutableObject<ILogicalOperator>(top));
context.computeAndSetTypeEnvironmentForOperator(npOp);
top = npOp;
}
opRef.setValue(top);
return true;
}
use of org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractBinaryJoinOperator in project asterixdb by apache.
the class PushMapOperatorDownThroughProductRule method rewritePost.
@Override
public boolean rewritePost(Mutable<ILogicalOperator> opRef, IOptimizationContext context) throws AlgebricksException {
AbstractLogicalOperator op1 = (AbstractLogicalOperator) opRef.getValue();
// since a new LIMIT under a join can't generate the original result.
if (!op1.isMap() || op1.getOperatorTag() == LogicalOperatorTag.LIMIT) {
return false;
}
if (!OperatorPropertiesUtil.isMovable(op1)) {
return false;
}
;
Mutable<ILogicalOperator> op2Ref = op1.getInputs().get(0);
AbstractLogicalOperator op2 = (AbstractLogicalOperator) op2Ref.getValue();
if (op2.getOperatorTag() != LogicalOperatorTag.INNERJOIN) {
return false;
}
AbstractBinaryJoinOperator join = (AbstractBinaryJoinOperator) op2;
if (!OperatorPropertiesUtil.isAlwaysTrueCond(join.getCondition().getValue())) {
return false;
}
List<LogicalVariable> used = new ArrayList<LogicalVariable>();
VariableUtilities.getUsedVariables(op1, used);
Mutable<ILogicalOperator> b0Ref = op2.getInputs().get(0);
ILogicalOperator b0 = b0Ref.getValue();
List<LogicalVariable> b0Scm = new ArrayList<LogicalVariable>();
VariableUtilities.getLiveVariables(b0, b0Scm);
if (b0Scm.containsAll(used)) {
// push operator on left branch
op2Ref.setValue(b0);
b0Ref.setValue(op1);
opRef.setValue(op2);
return true;
} else {
Mutable<ILogicalOperator> b1Ref = op2.getInputs().get(1);
ILogicalOperator b1 = b1Ref.getValue();
List<LogicalVariable> b1Scm = new ArrayList<LogicalVariable>();
VariableUtilities.getLiveVariables(b1, b1Scm);
if (b1Scm.containsAll(used)) {
// push operator on right branch
op2Ref.setValue(b1);
b1Ref.setValue(op1);
opRef.setValue(op2);
return true;
} else {
return false;
}
}
}
Aggregations