use of org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractLogicalOperator in project asterixdb by apache.
the class SetAsterixPhysicalOperatorsRule method generateMergeAggregationExpressions.
private static void generateMergeAggregationExpressions(GroupByOperator gby, IOptimizationContext context) throws AlgebricksException {
if (gby.getNestedPlans().size() != 1) {
throw new AlgebricksException("External group-by currently works only for one nested plan with one root containing" + "an aggregate and a nested-tuple-source.");
}
ILogicalPlan p0 = gby.getNestedPlans().get(0);
if (p0.getRoots().size() != 1) {
throw new AlgebricksException("External group-by currently works only for one nested plan with one root containing" + "an aggregate and a nested-tuple-source.");
}
IMergeAggregationExpressionFactory mergeAggregationExpressionFactory = context.getMergeAggregationExpressionFactory();
Mutable<ILogicalOperator> r0 = p0.getRoots().get(0);
AbstractLogicalOperator r0Logical = (AbstractLogicalOperator) r0.getValue();
if (r0Logical.getOperatorTag() != LogicalOperatorTag.AGGREGATE) {
throw new AlgebricksException("The merge aggregation expression generation should not process a " + r0Logical.getOperatorTag() + " operator.");
}
AggregateOperator aggOp = (AggregateOperator) r0.getValue();
List<Mutable<ILogicalExpression>> aggFuncRefs = aggOp.getExpressions();
List<LogicalVariable> aggProducedVars = aggOp.getVariables();
int n = aggOp.getExpressions().size();
List<Mutable<ILogicalExpression>> mergeExpressionRefs = new ArrayList<Mutable<ILogicalExpression>>();
for (int i = 0; i < n; i++) {
ILogicalExpression mergeExpr = mergeAggregationExpressionFactory.createMergeAggregation(aggProducedVars.get(i), aggFuncRefs.get(i).getValue(), context);
if (mergeExpr == null) {
throw new AlgebricksException("The aggregation function " + aggFuncRefs.get(i).getValue() + " does not have a registered intermediate aggregation function.");
}
mergeExpressionRefs.add(new MutableObject<ILogicalExpression>(mergeExpr));
}
aggOp.setMergeExpressions(mergeExpressionRefs);
}
use of org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractLogicalOperator in project asterixdb by apache.
the class SetAsterixPhysicalOperatorsRule method computeDefaultPhysicalOp.
private static void computeDefaultPhysicalOp(AbstractLogicalOperator op, IOptimizationContext context) throws AlgebricksException {
PhysicalOptimizationConfig physicalOptimizationConfig = context.getPhysicalOptimizationConfig();
if (op.getOperatorTag().equals(LogicalOperatorTag.GROUP)) {
GroupByOperator gby = (GroupByOperator) op;
if (gby.getNestedPlans().size() == 1) {
ILogicalPlan p0 = gby.getNestedPlans().get(0);
if (p0.getRoots().size() == 1) {
Mutable<ILogicalOperator> r0 = p0.getRoots().get(0);
if (((AbstractLogicalOperator) (r0.getValue())).getOperatorTag().equals(LogicalOperatorTag.AGGREGATE)) {
AggregateOperator aggOp = (AggregateOperator) r0.getValue();
boolean serializable = true;
for (Mutable<ILogicalExpression> exprRef : aggOp.getExpressions()) {
AbstractFunctionCallExpression expr = (AbstractFunctionCallExpression) exprRef.getValue();
if (!BuiltinFunctions.isAggregateFunctionSerializable(expr.getFunctionIdentifier())) {
serializable = false;
break;
}
}
if ((gby.getAnnotations().get(OperatorAnnotations.USE_HASH_GROUP_BY) == Boolean.TRUE || gby.getAnnotations().get(OperatorAnnotations.USE_EXTERNAL_GROUP_BY) == Boolean.TRUE)) {
boolean setToExternalGby = false;
if (serializable) {
// if serializable, use external group-by
// now check whether the serialized version aggregation function has corresponding intermediate agg
boolean hasIntermediateAgg = true;
IMergeAggregationExpressionFactory mergeAggregationExpressionFactory = context.getMergeAggregationExpressionFactory();
List<LogicalVariable> originalVariables = aggOp.getVariables();
List<Mutable<ILogicalExpression>> aggExprs = aggOp.getExpressions();
int aggNum = aggExprs.size();
for (int i = 0; i < aggNum; i++) {
AbstractFunctionCallExpression expr = (AbstractFunctionCallExpression) aggExprs.get(i).getValue();
AggregateFunctionCallExpression serialAggExpr = BuiltinFunctions.makeSerializableAggregateFunctionExpression(expr.getFunctionIdentifier(), expr.getArguments());
if (mergeAggregationExpressionFactory.createMergeAggregation(originalVariables.get(i), serialAggExpr, context) == null) {
hasIntermediateAgg = false;
break;
}
}
// Check whether there are multiple aggregates in the sub plan.
// Currently, we don't support multiple aggregates in one external group-by.
boolean multipleAggOpsFound = false;
ILogicalOperator r1Logical = aggOp;
while (r1Logical.hasInputs()) {
r1Logical = r1Logical.getInputs().get(0).getValue();
if (r1Logical.getOperatorTag() == LogicalOperatorTag.AGGREGATE) {
multipleAggOpsFound = true;
break;
}
}
if (hasIntermediateAgg && !multipleAggOpsFound) {
for (int i = 0; i < aggNum; i++) {
AbstractFunctionCallExpression expr = (AbstractFunctionCallExpression) aggExprs.get(i).getValue();
AggregateFunctionCallExpression serialAggExpr = BuiltinFunctions.makeSerializableAggregateFunctionExpression(expr.getFunctionIdentifier(), expr.getArguments());
aggOp.getExpressions().get(i).setValue(serialAggExpr);
}
ExternalGroupByPOperator externalGby = new ExternalGroupByPOperator(gby.getGroupByList(), physicalOptimizationConfig.getMaxFramesExternalGroupBy(), (long) physicalOptimizationConfig.getMaxFramesExternalGroupBy() * physicalOptimizationConfig.getFrameSize());
generateMergeAggregationExpressions(gby, context);
op.setPhysicalOperator(externalGby);
setToExternalGby = true;
}
}
if (!setToExternalGby) {
// if not serializable or no intermediate agg, use pre-clustered group-by
List<Pair<LogicalVariable, Mutable<ILogicalExpression>>> gbyList = gby.getGroupByList();
List<LogicalVariable> columnList = new ArrayList<LogicalVariable>(gbyList.size());
for (Pair<LogicalVariable, Mutable<ILogicalExpression>> p : gbyList) {
ILogicalExpression expr = p.second.getValue();
if (expr.getExpressionTag() == LogicalExpressionTag.VARIABLE) {
VariableReferenceExpression varRef = (VariableReferenceExpression) expr;
columnList.add(varRef.getVariableReference());
}
}
op.setPhysicalOperator(new PreclusteredGroupByPOperator(columnList, gby.isGroupAll()));
}
}
} else if (((AbstractLogicalOperator) (r0.getValue())).getOperatorTag().equals(LogicalOperatorTag.RUNNINGAGGREGATE)) {
List<Pair<LogicalVariable, Mutable<ILogicalExpression>>> gbyList = gby.getGroupByList();
List<LogicalVariable> columnList = new ArrayList<LogicalVariable>(gbyList.size());
for (Pair<LogicalVariable, Mutable<ILogicalExpression>> p : gbyList) {
ILogicalExpression expr = p.second.getValue();
if (expr.getExpressionTag() == LogicalExpressionTag.VARIABLE) {
VariableReferenceExpression varRef = (VariableReferenceExpression) expr;
columnList.add(varRef.getVariableReference());
}
}
op.setPhysicalOperator(new PreclusteredGroupByPOperator(columnList, gby.isGroupAll()));
} else {
throw new AlgebricksException("Unsupported nested operator within a group-by: " + ((AbstractLogicalOperator) (r0.getValue())).getOperatorTag().name());
}
}
}
}
if (op.getPhysicalOperator() == null) {
switch(op.getOperatorTag()) {
case INNERJOIN:
{
JoinUtils.setJoinAlgorithmAndExchangeAlgo((InnerJoinOperator) op, context);
break;
}
case LEFTOUTERJOIN:
{
JoinUtils.setJoinAlgorithmAndExchangeAlgo((LeftOuterJoinOperator) op, context);
break;
}
case UNNEST_MAP:
case LEFT_OUTER_UNNEST_MAP:
{
ILogicalExpression unnestExpr = null;
unnestExpr = ((AbstractUnnestMapOperator) op).getExpressionRef().getValue();
if (unnestExpr.getExpressionTag() == LogicalExpressionTag.FUNCTION_CALL) {
AbstractFunctionCallExpression f = (AbstractFunctionCallExpression) unnestExpr;
FunctionIdentifier fid = f.getFunctionIdentifier();
if (!fid.equals(BuiltinFunctions.INDEX_SEARCH)) {
throw new IllegalStateException();
}
AccessMethodJobGenParams jobGenParams = new AccessMethodJobGenParams();
jobGenParams.readFromFuncArgs(f.getArguments());
MetadataProvider mp = (MetadataProvider) context.getMetadataProvider();
DataSourceId dataSourceId = new DataSourceId(jobGenParams.getDataverseName(), jobGenParams.getDatasetName());
Dataset dataset = mp.findDataset(jobGenParams.getDataverseName(), jobGenParams.getDatasetName());
IDataSourceIndex<String, DataSourceId> dsi = mp.findDataSourceIndex(jobGenParams.getIndexName(), dataSourceId);
INodeDomain storageDomain = mp.findNodeDomain(dataset.getNodeGroupName());
if (dsi == null) {
throw new AlgebricksException("Could not find index " + jobGenParams.getIndexName() + " for dataset " + dataSourceId);
}
IndexType indexType = jobGenParams.getIndexType();
boolean requiresBroadcast = jobGenParams.getRequiresBroadcast();
switch(indexType) {
case BTREE:
{
BTreeJobGenParams btreeJobGenParams = new BTreeJobGenParams();
btreeJobGenParams.readFromFuncArgs(f.getArguments());
op.setPhysicalOperator(new BTreeSearchPOperator(dsi, storageDomain, requiresBroadcast, btreeJobGenParams.isPrimaryIndex(), btreeJobGenParams.isEqCondition(), btreeJobGenParams.getLowKeyVarList(), btreeJobGenParams.getHighKeyVarList()));
break;
}
case RTREE:
{
op.setPhysicalOperator(new RTreeSearchPOperator(dsi, storageDomain, requiresBroadcast));
break;
}
case SINGLE_PARTITION_WORD_INVIX:
case SINGLE_PARTITION_NGRAM_INVIX:
{
op.setPhysicalOperator(new InvertedIndexPOperator(dsi, storageDomain, requiresBroadcast, false));
break;
}
case LENGTH_PARTITIONED_WORD_INVIX:
case LENGTH_PARTITIONED_NGRAM_INVIX:
{
op.setPhysicalOperator(new InvertedIndexPOperator(dsi, storageDomain, requiresBroadcast, true));
break;
}
default:
{
throw new NotImplementedException(indexType + " indexes are not implemented.");
}
}
}
break;
}
}
}
if (op.hasNestedPlans()) {
AbstractOperatorWithNestedPlans nested = (AbstractOperatorWithNestedPlans) op;
for (ILogicalPlan p : nested.getNestedPlans()) {
setPhysicalOperators(p, context);
}
}
for (Mutable<ILogicalOperator> opRef : op.getInputs()) {
computeDefaultPhysicalOp((AbstractLogicalOperator) opRef.getValue(), context);
}
}
use of org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractLogicalOperator in project asterixdb by apache.
the class IntroduceJoinAccessMethodRule method checkAndApplyJoinTransformation.
/**
* Recursively traverse the given plan and check whether a INNERJOIN or LEFTOUTERJOIN operator exists.
* If one is found, maintain the path from the root to the given join operator and
* optimize the path from the given join operator to the EMPTY_TUPLE_SOURCE operator
* if it is not already optimized.
*/
protected boolean checkAndApplyJoinTransformation(Mutable<ILogicalOperator> opRef, IOptimizationContext context) throws AlgebricksException {
AbstractLogicalOperator op = (AbstractLogicalOperator) opRef.getValue();
boolean joinFoundAndOptimizationApplied;
// Check the current operator pattern to see whether it is a JOIN or not.
boolean isThisOpInnerJoin = isInnerJoin(op);
boolean isThisOpLeftOuterJoin = isLeftOuterJoin(op);
boolean isParentOpGroupBy = hasGroupBy;
Mutable<ILogicalOperator> joinRefFromThisOp = null;
AbstractBinaryJoinOperator joinOpFromThisOp = null;
if (isThisOpInnerJoin) {
// Set join operator.
joinRef = opRef;
joinOp = (InnerJoinOperator) op;
joinRefFromThisOp = opRef;
joinOpFromThisOp = (InnerJoinOperator) op;
} else if (isThisOpLeftOuterJoin) {
// Set left-outer-join op.
// The current operator is GROUP and the child of this op is LEFTOUERJOIN.
joinRef = op.getInputs().get(0);
joinOp = (LeftOuterJoinOperator) joinRef.getValue();
joinRefFromThisOp = op.getInputs().get(0);
joinOpFromThisOp = (LeftOuterJoinOperator) joinRefFromThisOp.getValue();
}
// to make sure an earlier join in the path is optimized first.
for (Mutable<ILogicalOperator> inputOpRef : op.getInputs()) {
joinFoundAndOptimizationApplied = checkAndApplyJoinTransformation(inputOpRef, context);
if (joinFoundAndOptimizationApplied) {
return true;
}
}
// For a JOIN case, try to transform the given plan.
if (isThisOpInnerJoin || isThisOpLeftOuterJoin) {
// Restore the information from this operator since it might have been be set to null
// if there are other join operators in the earlier path.
joinRef = joinRefFromThisOp;
joinOp = joinOpFromThisOp;
boolean continueCheck = true;
// Already checked? If not, this operator may be optimized.
if (context.checkIfInDontApplySet(this, joinOp)) {
continueCheck = false;
}
// For each access method, this contains the information about
// whether an available index can be applicable or not.
Map<IAccessMethod, AccessMethodAnalysisContext> analyzedAMs = null;
if (continueCheck) {
analyzedAMs = new HashMap<>();
}
// whether the given plan is truly optimizable or not.
if (continueCheck && !checkJoinOpConditionAndInitSubTree(context)) {
continueCheck = false;
}
// Analyze the condition of SELECT operator and initialize analyzedAMs.
// Check whether the function in the SELECT operator can be truly transformed.
boolean matchInLeftSubTree = false;
boolean matchInRightSubTree = false;
if (continueCheck) {
if (leftSubTree.hasDataSource()) {
matchInLeftSubTree = analyzeSelectOrJoinOpConditionAndUpdateAnalyzedAM(joinCond, leftSubTree.getAssignsAndUnnests(), analyzedAMs, context, typeEnvironment);
}
if (rightSubTree.hasDataSource()) {
matchInRightSubTree = analyzeSelectOrJoinOpConditionAndUpdateAnalyzedAM(joinCond, rightSubTree.getAssignsAndUnnests(), analyzedAMs, context, typeEnvironment);
}
}
// Find the dataset from the data-source and the record type of the dataset from the metadata.
// This will be used to find an applicable index on the dataset.
boolean checkLeftSubTreeMetadata = false;
boolean checkRightSubTreeMetadata = false;
if (continueCheck && (matchInLeftSubTree || matchInRightSubTree)) {
// Set dataset and type metadata.
if (matchInLeftSubTree) {
checkLeftSubTreeMetadata = leftSubTree.setDatasetAndTypeMetadata(metadataProvider);
}
if (matchInRightSubTree) {
checkRightSubTreeMetadata = rightSubTree.setDatasetAndTypeMetadata(metadataProvider);
}
}
if (continueCheck && (checkLeftSubTreeMetadata || checkRightSubTreeMetadata)) {
// Then find the applicable indexes for the variables used in the JOIN condition.
if (checkLeftSubTreeMetadata) {
fillSubTreeIndexExprs(leftSubTree, analyzedAMs, context);
}
if (checkRightSubTreeMetadata) {
fillSubTreeIndexExprs(rightSubTree, analyzedAMs, context);
}
// Prune the access methods based on the function expression and access methods.
pruneIndexCandidates(analyzedAMs, context, typeEnvironment);
// If the right subtree (inner branch) has indexes, one of those indexes will be used.
// Remove the indexes from the outer branch in the optimizer's consideration list for this rule.
pruneIndexCandidatesFromOuterBranch(analyzedAMs);
// We are going to use indexes from the inner branch.
// If no index is available, then we stop here.
Pair<IAccessMethod, Index> chosenIndex = chooseBestIndex(analyzedAMs);
if (chosenIndex == null) {
context.addToDontApplySet(this, joinOp);
continueCheck = false;
}
if (continueCheck) {
// Apply plan transformation using chosen index.
AccessMethodAnalysisContext analysisCtx = analyzedAMs.get(chosenIndex.first);
// in GroupByOp.
if (isThisOpLeftOuterJoin && isParentOpGroupBy) {
analysisCtx.setLOJGroupbyOpRef(opRef);
ScalarFunctionCallExpression isNullFuncExpr = AccessMethodUtils.findLOJIsMissingFuncInGroupBy((GroupByOperator) opRef.getValue());
analysisCtx.setLOJIsNullFuncInGroupBy(isNullFuncExpr);
}
Dataset indexDataset = analysisCtx.getDatasetFromIndexDatasetMap(chosenIndex.second);
// from the right subtree. The following is just a sanity check.
if (!rightSubTree.hasDataSourceScan() && !indexDataset.getDatasetName().equals(rightSubTree.getDataset().getDatasetName())) {
return false;
}
// Finally, try to apply plan transformation using chosen index.
boolean res = chosenIndex.first.applyJoinPlanTransformation(joinRef, leftSubTree, rightSubTree, chosenIndex.second, analysisCtx, context, isThisOpLeftOuterJoin, isParentOpGroupBy);
// will find them.
if (res) {
return res;
}
}
}
joinRef = null;
joinOp = null;
}
return false;
}
use of org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractLogicalOperator in project asterixdb by apache.
the class IntroduceLSMComponentFilterRule method getFieldNameFromSubAssignTree.
private Pair<ARecordType, List<String>> getFieldNameFromSubAssignTree(IOptimizableFuncExpr optFuncExpr, AbstractLogicalOperator op, int varIndex, ARecordType recType) {
AbstractLogicalExpression expr = null;
if (op.getOperatorTag() == LogicalOperatorTag.ASSIGN) {
AssignOperator assignOp = (AssignOperator) op;
expr = (AbstractLogicalExpression) assignOp.getExpressions().get(varIndex).getValue();
}
if (expr == null || expr.getExpressionTag() != LogicalExpressionTag.FUNCTION_CALL) {
return null;
}
AbstractFunctionCallExpression funcExpr = (AbstractFunctionCallExpression) expr;
FunctionIdentifier funcIdent = funcExpr.getFunctionIdentifier();
if (funcIdent == BuiltinFunctions.FIELD_ACCESS_BY_NAME || funcIdent == BuiltinFunctions.FIELD_ACCESS_BY_INDEX) {
//get the variable from here. Figure out which input it came from. Go to that input!!!
ArrayList<LogicalVariable> usedVars = new ArrayList<>();
expr.getUsedVariables(usedVars);
LogicalVariable usedVar = usedVars.get(0);
List<String> returnList = new ArrayList<>();
//Find the input that it came from
for (int varCheck = 0; varCheck < op.getInputs().size(); varCheck++) {
AbstractLogicalOperator nestedOp = (AbstractLogicalOperator) op.getInputs().get(varCheck).getValue();
if (nestedOp.getOperatorTag() != LogicalOperatorTag.ASSIGN) {
if (varCheck == op.getInputs().size() - 1) {
}
} else {
int nestedAssignVar = ((AssignOperator) nestedOp).getVariables().indexOf(usedVar);
if (nestedAssignVar == -1) {
continue;
}
//get the nested info from the lower input
Pair<ARecordType, List<String>> lowerInfo = getFieldNameFromSubAssignTree(optFuncExpr, (AbstractLogicalOperator) op.getInputs().get(varCheck).getValue(), nestedAssignVar, recType);
if (lowerInfo != null) {
recType = lowerInfo.first;
returnList = lowerInfo.second;
}
}
}
if (funcIdent == BuiltinFunctions.FIELD_ACCESS_BY_NAME) {
String fieldName = ConstantExpressionUtil.getStringArgument(funcExpr, 1);
if (fieldName == null) {
return null;
}
returnList.add(fieldName);
return new Pair<>(recType, returnList);
} else if (funcIdent == BuiltinFunctions.FIELD_ACCESS_BY_INDEX) {
Integer fieldIndex = ConstantExpressionUtil.getIntArgument(funcExpr, 1);
if (fieldIndex == null) {
return null;
}
returnList.add(recType.getFieldNames()[fieldIndex]);
IAType subType = recType.getFieldTypes()[fieldIndex];
if (subType.getTypeTag() == ATypeTag.OBJECT) {
recType = (ARecordType) subType;
}
return new Pair<>(recType, returnList);
}
}
ILogicalExpression argExpr = funcExpr.getArguments().get(0).getValue();
if (argExpr.getExpressionTag() != LogicalExpressionTag.VARIABLE) {
return null;
}
return null;
}
use of org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractLogicalOperator in project asterixdb by apache.
the class IntroduceLSMComponentFilterRule method findMacthedExprFieldName.
private boolean findMacthedExprFieldName(IOptimizableFuncExpr optFuncExpr, AbstractLogicalOperator op, Dataset dataset, ARecordType recType, List<Index> datasetIndexes, IOptimizationContext context) throws AlgebricksException {
AbstractLogicalOperator descendantOp = (AbstractLogicalOperator) op.getInputs().get(0).getValue();
while (descendantOp != null) {
if (descendantOp.getOperatorTag() == LogicalOperatorTag.ASSIGN) {
AssignOperator assignOp = (AssignOperator) descendantOp;
List<LogicalVariable> varList = assignOp.getVariables();
for (int varIndex = 0; varIndex < varList.size(); varIndex++) {
LogicalVariable var = varList.get(varIndex);
int funcVarIndex = optFuncExpr.findLogicalVar(var);
if (funcVarIndex == -1) {
continue;
}
List<String> fieldName = getFieldNameFromSubAssignTree(optFuncExpr, descendantOp, varIndex, recType).second;
if (fieldName == null) {
return false;
}
optFuncExpr.setFieldName(funcVarIndex, fieldName);
return true;
}
} else if (descendantOp.getOperatorTag() == LogicalOperatorTag.DATASOURCESCAN) {
DataSourceScanOperator scanOp = (DataSourceScanOperator) descendantOp;
List<LogicalVariable> varList = scanOp.getVariables();
for (int varIndex = 0; varIndex < varList.size(); varIndex++) {
LogicalVariable var = varList.get(varIndex);
int funcVarIndex = optFuncExpr.findLogicalVar(var);
if (funcVarIndex == -1) {
continue;
}
// The variable value is one of the partitioning fields.
List<String> fieldName = dataset.getPrimaryKeys().get(varIndex);
if (fieldName == null) {
return false;
}
optFuncExpr.setFieldName(funcVarIndex, fieldName);
return true;
}
} else if (descendantOp.getOperatorTag() == LogicalOperatorTag.UNNEST_MAP) {
UnnestMapOperator unnestMapOp = (UnnestMapOperator) descendantOp;
List<LogicalVariable> varList = unnestMapOp.getVariables();
for (int varIndex = 0; varIndex < varList.size(); varIndex++) {
LogicalVariable var = varList.get(varIndex);
int funcVarIndex = optFuncExpr.findLogicalVar(var);
if (funcVarIndex == -1) {
continue;
}
String indexName;
Index index = null;
ILogicalExpression unnestExpr = unnestMapOp.getExpressionRef().getValue();
if (unnestExpr.getExpressionTag() == LogicalExpressionTag.FUNCTION_CALL) {
AbstractFunctionCallExpression f = (AbstractFunctionCallExpression) unnestExpr;
FunctionIdentifier fid = f.getFunctionIdentifier();
if (!fid.equals(BuiltinFunctions.INDEX_SEARCH)) {
throw new IllegalStateException();
}
AccessMethodJobGenParams jobGenParams = new AccessMethodJobGenParams();
jobGenParams.readFromFuncArgs(f.getArguments());
indexName = jobGenParams.indexName;
for (Index idx : datasetIndexes) {
if (idx.getIndexName().compareTo(indexName) == 0) {
index = idx;
break;
}
}
}
IAType metaItemType = ((MetadataProvider) context.getMetadataProvider()).findType(dataset.getMetaItemTypeDataverseName(), dataset.getMetaItemTypeName());
ARecordType metaRecType = (ARecordType) metaItemType;
int numSecondaryKeys = KeyFieldTypeUtil.getNumSecondaryKeys(index, recType, metaRecType);
List<String> fieldName;
if (varIndex >= numSecondaryKeys) {
fieldName = dataset.getPrimaryKeys().get(varIndex - numSecondaryKeys);
} else {
fieldName = index.getKeyFieldNames().get(varIndex);
}
if (fieldName == null) {
return false;
}
optFuncExpr.setFieldName(funcVarIndex, fieldName);
return true;
}
}
if (descendantOp.getInputs().isEmpty()) {
break;
}
descendantOp = (AbstractLogicalOperator) descendantOp.getInputs().get(0).getValue();
}
return false;
}
Aggregations