Search in sources :

Example 61 with AssignOperator

use of org.apache.hyracks.algebricks.core.algebra.operators.logical.AssignOperator in project asterixdb by apache.

the class BTreeAccessMethod method createSecondaryToPrimaryPlan.

@Override
public ILogicalOperator createSecondaryToPrimaryPlan(Mutable<ILogicalExpression> conditionRef, OptimizableOperatorSubTree indexSubTree, OptimizableOperatorSubTree probeSubTree, Index chosenIndex, AccessMethodAnalysisContext analysisCtx, boolean retainInput, boolean retainNull, boolean requiresBroadcast, IOptimizationContext context) throws AlgebricksException {
    Dataset dataset = indexSubTree.getDataset();
    ARecordType recordType = indexSubTree.getRecordType();
    ARecordType metaRecordType = indexSubTree.getMetaRecordType();
    // we made sure indexSubTree has datasource scan
    AbstractDataSourceOperator dataSourceOp = (AbstractDataSourceOperator) indexSubTree.getDataSourceRef().getValue();
    List<Pair<Integer, Integer>> exprAndVarList = analysisCtx.getIndexExprsFromIndexExprsAndVars(chosenIndex);
    int numSecondaryKeys = analysisCtx.getNumberOfMatchedKeys(chosenIndex);
    // List of function expressions that will be replaced by the secondary-index search.
    // These func exprs will be removed from the select condition at the very end of this method.
    Set<ILogicalExpression> replacedFuncExprs = new HashSet<>();
    // Info on high and low keys for the BTree search predicate.
    ILogicalExpression[] lowKeyExprs = new ILogicalExpression[numSecondaryKeys];
    ILogicalExpression[] highKeyExprs = new ILogicalExpression[numSecondaryKeys];
    LimitType[] lowKeyLimits = new LimitType[numSecondaryKeys];
    LimitType[] highKeyLimits = new LimitType[numSecondaryKeys];
    boolean[] lowKeyInclusive = new boolean[numSecondaryKeys];
    boolean[] highKeyInclusive = new boolean[numSecondaryKeys];
    ILogicalExpression[] constantAtRuntimeExpressions = new ILogicalExpression[numSecondaryKeys];
    LogicalVariable[] constAtRuntimeExprVars = new LogicalVariable[numSecondaryKeys];
    /* TODO: For now we don't do any sophisticated analysis of the func exprs to come up with "the best" range
         * predicate. If we can't figure out how to integrate a certain funcExpr into the current predicate,
         * we just bail by setting this flag.*/
    boolean couldntFigureOut = false;
    boolean doneWithExprs = false;
    boolean isEqCondition = false;
    BitSet setLowKeys = new BitSet(numSecondaryKeys);
    BitSet setHighKeys = new BitSet(numSecondaryKeys);
    // Go through the func exprs listed as optimizable by the chosen index,
    // and formulate a range predicate on the secondary-index keys.
    // checks whether a type casting happened from a real (FLOAT, DOUBLE) value to an INT value
    // since we have a round issues when dealing with LT(<) OR GT(>) operator.
    boolean realTypeConvertedToIntegerType;
    for (Pair<Integer, Integer> exprIndex : exprAndVarList) {
        // Position of the field of matchedFuncExprs.get(exprIndex) in the chosen index's indexed exprs.
        IOptimizableFuncExpr optFuncExpr = analysisCtx.getMatchedFuncExpr(exprIndex.first);
        int keyPos = indexOf(optFuncExpr.getFieldName(0), chosenIndex.getKeyFieldNames());
        if (keyPos < 0 && optFuncExpr.getNumLogicalVars() > 1) {
            // If we are optimizing a join, the matching field may be the second field name.
            keyPos = indexOf(optFuncExpr.getFieldName(1), chosenIndex.getKeyFieldNames());
        }
        if (keyPos < 0) {
            throw CompilationException.create(ErrorCode.NO_INDEX_FIELD_NAME_FOR_GIVEN_FUNC_EXPR);
        }
        Pair<ILogicalExpression, Boolean> returnedSearchKeyExpr = AccessMethodUtils.createSearchKeyExpr(optFuncExpr, indexSubTree, probeSubTree);
        ILogicalExpression searchKeyExpr = returnedSearchKeyExpr.first;
        if (searchKeyExpr.getExpressionTag() == LogicalExpressionTag.FUNCTION_CALL) {
            constantAtRuntimeExpressions[keyPos] = searchKeyExpr;
            constAtRuntimeExprVars[keyPos] = context.newVar();
            searchKeyExpr = new VariableReferenceExpression(constAtRuntimeExprVars[keyPos]);
        }
        realTypeConvertedToIntegerType = returnedSearchKeyExpr.second;
        LimitType limit = getLimitType(optFuncExpr, probeSubTree);
        //
        if (realTypeConvertedToIntegerType) {
            if (limit == LimitType.HIGH_EXCLUSIVE) {
                limit = LimitType.HIGH_INCLUSIVE;
            } else if (limit == LimitType.LOW_EXCLUSIVE) {
                limit = LimitType.LOW_INCLUSIVE;
            }
        }
        switch(limit) {
            case EQUAL:
                {
                    if (lowKeyLimits[keyPos] == null && highKeyLimits[keyPos] == null) {
                        lowKeyLimits[keyPos] = highKeyLimits[keyPos] = limit;
                        lowKeyInclusive[keyPos] = highKeyInclusive[keyPos] = true;
                        lowKeyExprs[keyPos] = highKeyExprs[keyPos] = searchKeyExpr;
                        setLowKeys.set(keyPos);
                        setHighKeys.set(keyPos);
                        isEqCondition = true;
                    } else {
                        // (once from analyzing each side of the join)
                        if (lowKeyLimits[keyPos] == limit && lowKeyInclusive[keyPos] == true && lowKeyExprs[keyPos].equals(searchKeyExpr) && highKeyLimits[keyPos] == limit && highKeyInclusive[keyPos] == true && highKeyExprs[keyPos].equals(searchKeyExpr)) {
                            isEqCondition = true;
                            break;
                        }
                        couldntFigureOut = true;
                    }
                    // If high and low keys are set, we exit for now.
                    if (setLowKeys.cardinality() == numSecondaryKeys && setHighKeys.cardinality() == numSecondaryKeys) {
                        doneWithExprs = true;
                    }
                    break;
                }
            case HIGH_EXCLUSIVE:
                {
                    if (highKeyLimits[keyPos] == null || (highKeyLimits[keyPos] != null && highKeyInclusive[keyPos])) {
                        highKeyLimits[keyPos] = limit;
                        highKeyExprs[keyPos] = searchKeyExpr;
                        highKeyInclusive[keyPos] = false;
                    } else {
                        // (once from analyzing each side of the join)
                        if (highKeyLimits[keyPos] == limit && highKeyInclusive[keyPos] == false && highKeyExprs[keyPos].equals(searchKeyExpr)) {
                            break;
                        }
                        couldntFigureOut = true;
                        doneWithExprs = true;
                    }
                    break;
                }
            case HIGH_INCLUSIVE:
                {
                    if (highKeyLimits[keyPos] == null) {
                        highKeyLimits[keyPos] = limit;
                        highKeyExprs[keyPos] = searchKeyExpr;
                        highKeyInclusive[keyPos] = true;
                    } else {
                        // (once from analyzing each side of the join)
                        if (highKeyLimits[keyPos] == limit && highKeyInclusive[keyPos] == true && highKeyExprs[keyPos].equals(searchKeyExpr)) {
                            break;
                        }
                        couldntFigureOut = true;
                        doneWithExprs = true;
                    }
                    break;
                }
            case LOW_EXCLUSIVE:
                {
                    if (lowKeyLimits[keyPos] == null || (lowKeyLimits[keyPos] != null && lowKeyInclusive[keyPos])) {
                        lowKeyLimits[keyPos] = limit;
                        lowKeyExprs[keyPos] = searchKeyExpr;
                        lowKeyInclusive[keyPos] = false;
                    } else {
                        // (once from analyzing each side of the join)
                        if (lowKeyLimits[keyPos] == limit && lowKeyInclusive[keyPos] == false && lowKeyExprs[keyPos].equals(searchKeyExpr)) {
                            break;
                        }
                        couldntFigureOut = true;
                        doneWithExprs = true;
                    }
                    break;
                }
            case LOW_INCLUSIVE:
                {
                    if (lowKeyLimits[keyPos] == null) {
                        lowKeyLimits[keyPos] = limit;
                        lowKeyExprs[keyPos] = searchKeyExpr;
                        lowKeyInclusive[keyPos] = true;
                    } else {
                        // (once from analyzing each side of the join)
                        if (lowKeyLimits[keyPos] == limit && lowKeyInclusive[keyPos] == true && lowKeyExprs[keyPos].equals(searchKeyExpr)) {
                            break;
                        }
                        couldntFigureOut = true;
                        doneWithExprs = true;
                    }
                    break;
                }
            default:
                {
                    throw new IllegalStateException();
                }
        }
        if (!couldntFigureOut) {
            // Remember to remove this funcExpr later.
            replacedFuncExprs.add(analysisCtx.getMatchedFuncExpr(exprIndex.first).getFuncExpr());
        }
        if (doneWithExprs) {
            break;
        }
    }
    if (couldntFigureOut) {
        return null;
    }
    // If the select condition contains mixed open/closed intervals on multiple keys, then we make all intervals
    // closed to obtain a superset of answers and leave the original selection in place.
    boolean primaryIndexPostProccessingIsNeeded = false;
    for (int i = 1; i < numSecondaryKeys; ++i) {
        if (lowKeyInclusive[i] != lowKeyInclusive[0]) {
            Arrays.fill(lowKeyInclusive, true);
            primaryIndexPostProccessingIsNeeded = true;
            break;
        }
    }
    for (int i = 1; i < numSecondaryKeys; ++i) {
        if (highKeyInclusive[i] != highKeyInclusive[0]) {
            Arrays.fill(highKeyInclusive, true);
            primaryIndexPostProccessingIsNeeded = true;
            break;
        }
    }
    // determine cases when prefix search could be applied
    for (int i = 1; i < lowKeyExprs.length; i++) {
        if (lowKeyLimits[0] == null && lowKeyLimits[i] != null || lowKeyLimits[0] != null && lowKeyLimits[i] == null || highKeyLimits[0] == null && highKeyLimits[i] != null || highKeyLimits[0] != null && highKeyLimits[i] == null) {
            numSecondaryKeys--;
            primaryIndexPostProccessingIsNeeded = true;
        }
    }
    if (lowKeyLimits[0] == null) {
        lowKeyInclusive[0] = true;
    }
    if (highKeyLimits[0] == null) {
        highKeyInclusive[0] = true;
    }
    // Here we generate vars and funcs for assigning the secondary-index keys to be fed into the secondary-index
    // search.
    // List of variables for the assign.
    ArrayList<LogicalVariable> keyVarList = new ArrayList<>();
    // List of variables and expressions for the assign.
    ArrayList<LogicalVariable> assignKeyVarList = new ArrayList<>();
    ArrayList<Mutable<ILogicalExpression>> assignKeyExprList = new ArrayList<>();
    int numLowKeys = createKeyVarsAndExprs(numSecondaryKeys, lowKeyLimits, lowKeyExprs, assignKeyVarList, assignKeyExprList, keyVarList, context, constantAtRuntimeExpressions, constAtRuntimeExprVars);
    int numHighKeys = createKeyVarsAndExprs(numSecondaryKeys, highKeyLimits, highKeyExprs, assignKeyVarList, assignKeyExprList, keyVarList, context, constantAtRuntimeExpressions, constAtRuntimeExprVars);
    BTreeJobGenParams jobGenParams = new BTreeJobGenParams(chosenIndex.getIndexName(), IndexType.BTREE, dataset.getDataverseName(), dataset.getDatasetName(), retainInput, requiresBroadcast);
    jobGenParams.setLowKeyInclusive(lowKeyInclusive[0]);
    jobGenParams.setHighKeyInclusive(highKeyInclusive[0]);
    jobGenParams.setIsEqCondition(isEqCondition);
    jobGenParams.setLowKeyVarList(keyVarList, 0, numLowKeys);
    jobGenParams.setHighKeyVarList(keyVarList, numLowKeys, numHighKeys);
    ILogicalOperator inputOp = null;
    if (!assignKeyVarList.isEmpty()) {
        // Assign operator that sets the constant secondary-index search-key fields if necessary.
        AssignOperator assignConstantSearchKeys = new AssignOperator(assignKeyVarList, assignKeyExprList);
        // Input to this assign is the EmptyTupleSource (which the dataSourceScan also must have had as input).
        assignConstantSearchKeys.getInputs().add(new MutableObject<>(OperatorManipulationUtil.deepCopy(dataSourceOp.getInputs().get(0).getValue())));
        assignConstantSearchKeys.setExecutionMode(dataSourceOp.getExecutionMode());
        inputOp = assignConstantSearchKeys;
    } else if (probeSubTree == null) {
        //nonpure case
        //Make sure that the nonpure function is unpartitioned
        ILogicalOperator checkOp = dataSourceOp.getInputs().get(0).getValue();
        while (checkOp.getExecutionMode() != ExecutionMode.UNPARTITIONED) {
            if (checkOp.getInputs().size() == 1) {
                checkOp = checkOp.getInputs().get(0).getValue();
            } else {
                return null;
            }
        }
        inputOp = dataSourceOp.getInputs().get(0).getValue();
    } else {
        // All index search keys are variables.
        inputOp = probeSubTree.getRoot();
    }
    ILogicalOperator secondaryIndexUnnestOp = AccessMethodUtils.createSecondaryIndexUnnestMap(dataset, recordType, metaRecordType, chosenIndex, inputOp, jobGenParams, context, false, retainInput, retainNull);
    // Generate the rest of the upstream plan which feeds the search results into the primary index.
    AbstractUnnestMapOperator primaryIndexUnnestOp = null;
    boolean isPrimaryIndex = chosenIndex.isPrimaryIndex();
    if (dataset.getDatasetType() == DatasetType.EXTERNAL) {
        // External dataset
        UnnestMapOperator externalDataAccessOp = AccessMethodUtils.createExternalDataLookupUnnestMap(dataSourceOp, dataset, recordType, secondaryIndexUnnestOp, context, retainInput, retainNull);
        indexSubTree.getDataSourceRef().setValue(externalDataAccessOp);
        return externalDataAccessOp;
    } else if (!isPrimaryIndex) {
        primaryIndexUnnestOp = AccessMethodUtils.createPrimaryIndexUnnestMap(dataSourceOp, dataset, recordType, metaRecordType, secondaryIndexUnnestOp, context, true, retainInput, retainNull, false);
        // Adds equivalence classes --- one equivalent class between a primary key
        // variable and a record field-access expression.
        EquivalenceClassUtils.addEquivalenceClassesForPrimaryIndexAccess(primaryIndexUnnestOp, dataSourceOp.getVariables(), recordType, metaRecordType, dataset, context);
    } else {
        List<Object> primaryIndexOutputTypes = new ArrayList<>();
        AccessMethodUtils.appendPrimaryIndexTypes(dataset, recordType, metaRecordType, primaryIndexOutputTypes);
        List<LogicalVariable> scanVariables = dataSourceOp.getVariables();
        // If not, we create a new condition based on remaining ones.
        if (!primaryIndexPostProccessingIsNeeded) {
            List<Mutable<ILogicalExpression>> remainingFuncExprs = new ArrayList<>();
            try {
                getNewConditionExprs(conditionRef, replacedFuncExprs, remainingFuncExprs);
            } catch (CompilationException e) {
                return null;
            }
            // Generate new condition.
            if (!remainingFuncExprs.isEmpty()) {
                ILogicalExpression pulledCond = createSelectCondition(remainingFuncExprs);
                conditionRef.setValue(pulledCond);
            } else {
                conditionRef.setValue(null);
            }
        }
        // Checks whether LEFT_OUTER_UNNESTMAP operator is required.
        boolean leftOuterUnnestMapRequired = false;
        if (retainNull && retainInput) {
            leftOuterUnnestMapRequired = true;
        } else {
            leftOuterUnnestMapRequired = false;
        }
        if (conditionRef.getValue() != null) {
            // The job gen parameters are transferred to the actual job gen
            // via the UnnestMapOperator's function arguments.
            List<Mutable<ILogicalExpression>> primaryIndexFuncArgs = new ArrayList<>();
            jobGenParams.writeToFuncArgs(primaryIndexFuncArgs);
            // An index search is expressed as an unnest-map over an
            // index-search function.
            IFunctionInfo primaryIndexSearch = FunctionUtil.getFunctionInfo(BuiltinFunctions.INDEX_SEARCH);
            UnnestingFunctionCallExpression primaryIndexSearchFunc = new UnnestingFunctionCallExpression(primaryIndexSearch, primaryIndexFuncArgs);
            primaryIndexSearchFunc.setReturnsUniqueValues(true);
            if (!leftOuterUnnestMapRequired) {
                primaryIndexUnnestOp = new UnnestMapOperator(scanVariables, new MutableObject<ILogicalExpression>(primaryIndexSearchFunc), primaryIndexOutputTypes, retainInput);
            } else {
                primaryIndexUnnestOp = new LeftOuterUnnestMapOperator(scanVariables, new MutableObject<ILogicalExpression>(primaryIndexSearchFunc), primaryIndexOutputTypes, true);
            }
        } else {
            if (!leftOuterUnnestMapRequired) {
                primaryIndexUnnestOp = new UnnestMapOperator(scanVariables, ((UnnestMapOperator) secondaryIndexUnnestOp).getExpressionRef(), primaryIndexOutputTypes, retainInput);
            } else {
                primaryIndexUnnestOp = new LeftOuterUnnestMapOperator(scanVariables, ((LeftOuterUnnestMapOperator) secondaryIndexUnnestOp).getExpressionRef(), primaryIndexOutputTypes, true);
            }
        }
        primaryIndexUnnestOp.getInputs().add(new MutableObject<>(inputOp));
        // Adds equivalence classes --- one equivalent class between a primary key
        // variable and a record field-access expression.
        EquivalenceClassUtils.addEquivalenceClassesForPrimaryIndexAccess(primaryIndexUnnestOp, scanVariables, recordType, metaRecordType, dataset, context);
    }
    return primaryIndexUnnestOp;
}
Also used : IFunctionInfo(org.apache.hyracks.algebricks.core.algebra.functions.IFunctionInfo) LeftOuterUnnestMapOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.LeftOuterUnnestMapOperator) UnnestMapOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.UnnestMapOperator) AbstractUnnestMapOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractUnnestMapOperator) ArrayList(java.util.ArrayList) ArrayList(java.util.ArrayList) List(java.util.List) LeftOuterUnnestMapOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.LeftOuterUnnestMapOperator) Pair(org.apache.hyracks.algebricks.common.utils.Pair) HashSet(java.util.HashSet) MutableObject(org.apache.commons.lang3.mutable.MutableObject) LogicalVariable(org.apache.hyracks.algebricks.core.algebra.base.LogicalVariable) CompilationException(org.apache.asterix.common.exceptions.CompilationException) AbstractDataSourceOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractDataSourceOperator) UnnestingFunctionCallExpression(org.apache.hyracks.algebricks.core.algebra.expressions.UnnestingFunctionCallExpression) Dataset(org.apache.asterix.metadata.entities.Dataset) ILogicalOperator(org.apache.hyracks.algebricks.core.algebra.base.ILogicalOperator) BitSet(java.util.BitSet) AssignOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.AssignOperator) Mutable(org.apache.commons.lang3.mutable.Mutable) ILogicalExpression(org.apache.hyracks.algebricks.core.algebra.base.ILogicalExpression) VariableReferenceExpression(org.apache.hyracks.algebricks.core.algebra.expressions.VariableReferenceExpression) AbstractUnnestMapOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractUnnestMapOperator) ARecordType(org.apache.asterix.om.types.ARecordType)

Example 62 with AssignOperator

use of org.apache.hyracks.algebricks.core.algebra.operators.logical.AssignOperator in project asterixdb by apache.

the class InlineSubplanInputForNestedTupleSourceRule method applyGeneralFlattening.

private Pair<Boolean, LinkedHashMap<LogicalVariable, LogicalVariable>> applyGeneralFlattening(Mutable<ILogicalOperator> opRef, IOptimizationContext context) throws AlgebricksException {
    SubplanOperator subplanOp = (SubplanOperator) opRef.getValue();
    if (!SubplanFlatteningUtil.containsOperators(subplanOp, ImmutableSet.of(LogicalOperatorTag.DATASOURCESCAN, LogicalOperatorTag.INNERJOIN, // We don't have nested runtime for union-all and distinct hence we have to include them here.
    LogicalOperatorTag.LEFTOUTERJOIN, LogicalOperatorTag.UNIONALL, LogicalOperatorTag.DISTINCT))) {
        return new Pair<>(false, new LinkedHashMap<>());
    }
    Mutable<ILogicalOperator> inputOpRef = subplanOp.getInputs().get(0);
    ILogicalOperator inputOpBackup = inputOpRef.getValue();
    // Creates parameters for the left outer join operator.
    Pair<ILogicalOperator, Set<LogicalVariable>> primaryOpAndVars = EquivalenceClassUtils.findOrCreatePrimaryKeyOpAndVariables(inputOpBackup, true, context);
    ILogicalOperator inputOp = primaryOpAndVars.first;
    Set<LogicalVariable> primaryKeyVars = primaryOpAndVars.second;
    inputOpRef.setValue(inputOp);
    Set<LogicalVariable> inputLiveVars = new HashSet<>();
    VariableUtilities.getLiveVariables(inputOp, inputLiveVars);
    Pair<Map<LogicalVariable, LogicalVariable>, List<Pair<IOrder, Mutable<ILogicalExpression>>>> varMapAndOrderExprs = SubplanFlatteningUtil.inlineAllNestedTupleSource(subplanOp, context);
    Map<LogicalVariable, LogicalVariable> varMap = varMapAndOrderExprs.first;
    if (varMap == null) {
        inputOpRef.setValue(inputOpBackup);
        return new Pair<>(false, new LinkedHashMap<>());
    }
    Mutable<ILogicalOperator> lowestAggregateRefInSubplan = SubplanFlatteningUtil.findLowestAggregate(subplanOp.getNestedPlans().get(0).getRoots().get(0));
    Mutable<ILogicalOperator> rightInputOpRef = lowestAggregateRefInSubplan.getValue().getInputs().get(0);
    ILogicalOperator rightInputOp = rightInputOpRef.getValue();
    // Creates a variable to indicate whether a left input tuple is killed in the plan rooted at rightInputOp.
    LogicalVariable assignVar = context.newVar();
    ILogicalOperator assignOp = new AssignOperator(assignVar, new MutableObject<>(ConstantExpression.TRUE));
    assignOp.getInputs().add(rightInputOpRef);
    context.computeAndSetTypeEnvironmentForOperator(assignOp);
    rightInputOpRef = new MutableObject<>(assignOp);
    // Constructs the join predicate for the leftOuter join.
    List<Mutable<ILogicalExpression>> joinPredicates = new ArrayList<>();
    for (LogicalVariable liveVar : primaryKeyVars) {
        List<Mutable<ILogicalExpression>> arguments = new ArrayList<>();
        arguments.add(new MutableObject<>(new VariableReferenceExpression(liveVar)));
        LogicalVariable rightVar = varMap.get(liveVar);
        arguments.add(new MutableObject<>(new VariableReferenceExpression(rightVar)));
        ILogicalExpression expr = new ScalarFunctionCallExpression(FunctionUtil.getFunctionInfo(AlgebricksBuiltinFunctions.EQ), arguments);
        joinPredicates.add(new MutableObject<>(expr));
    }
    ILogicalExpression joinExpr = joinPredicates.size() > 1 ? new ScalarFunctionCallExpression(FunctionUtil.getFunctionInfo(AlgebricksBuiltinFunctions.AND), joinPredicates) : joinPredicates.size() > 0 ? joinPredicates.get(0).getValue() : ConstantExpression.TRUE;
    LeftOuterJoinOperator leftOuterJoinOp = new LeftOuterJoinOperator(new MutableObject<>(joinExpr), inputOpRef, rightInputOpRef);
    OperatorManipulationUtil.computeTypeEnvironmentBottomUp(rightInputOp, context);
    context.computeAndSetTypeEnvironmentForOperator(leftOuterJoinOp);
    // Creates group-by operator.
    List<Pair<LogicalVariable, Mutable<ILogicalExpression>>> groupByList = new ArrayList<Pair<LogicalVariable, Mutable<ILogicalExpression>>>();
    List<Pair<LogicalVariable, Mutable<ILogicalExpression>>> groupByDecorList = new ArrayList<Pair<LogicalVariable, Mutable<ILogicalExpression>>>();
    List<ILogicalPlan> nestedPlans = new ArrayList<>();
    GroupByOperator groupbyOp = new GroupByOperator(groupByList, groupByDecorList, nestedPlans);
    LinkedHashMap<LogicalVariable, LogicalVariable> replacedVarMap = new LinkedHashMap<>();
    for (LogicalVariable liveVar : primaryKeyVars) {
        LogicalVariable newVar = context.newVar();
        groupByList.add(new Pair<>(newVar, new MutableObject<>(new VariableReferenceExpression(liveVar))));
        // Adds variables for replacements in ancestors.
        replacedVarMap.put(liveVar, newVar);
    }
    for (LogicalVariable liveVar : inputLiveVars) {
        if (primaryKeyVars.contains(liveVar)) {
            continue;
        }
        groupByDecorList.add(new Pair<>(null, new MutableObject<>(new VariableReferenceExpression(liveVar))));
    }
    // Sets up the nested plan for the groupby operator.
    Mutable<ILogicalOperator> aggOpRef = subplanOp.getNestedPlans().get(0).getRoots().get(0);
    // Clears the input of the lowest aggregate.
    lowestAggregateRefInSubplan.getValue().getInputs().clear();
    Mutable<ILogicalOperator> currentOpRef = lowestAggregateRefInSubplan;
    // Adds an optional order operator.
    List<Pair<IOrder, Mutable<ILogicalExpression>>> orderExprs = varMapAndOrderExprs.second;
    if (!orderExprs.isEmpty()) {
        OrderOperator orderOp = new OrderOperator(orderExprs);
        currentOpRef = new MutableObject<>(orderOp);
        lowestAggregateRefInSubplan.getValue().getInputs().add(currentOpRef);
    }
    // Adds a select operator into the nested plan for group-by to remove tuples with NULL on {@code assignVar}, i.e.,
    // subplan input tuples that are filtered out within a subplan.
    Mutable<ILogicalExpression> filterVarExpr = new MutableObject<>(new VariableReferenceExpression(assignVar));
    List<Mutable<ILogicalExpression>> args = new ArrayList<>();
    args.add(filterVarExpr);
    List<Mutable<ILogicalExpression>> argsForNotFunction = new ArrayList<>();
    argsForNotFunction.add(new MutableObject<>(new ScalarFunctionCallExpression(FunctionUtil.getFunctionInfo(BuiltinFunctions.IS_MISSING), args)));
    SelectOperator selectOp = new SelectOperator(new MutableObject<>(new ScalarFunctionCallExpression(FunctionUtil.getFunctionInfo(BuiltinFunctions.NOT), argsForNotFunction)), false, null);
    currentOpRef.getValue().getInputs().add(new MutableObject<>(selectOp));
    selectOp.getInputs().add(new MutableObject<>(new NestedTupleSourceOperator(new MutableObject<>(groupbyOp))));
    List<Mutable<ILogicalOperator>> nestedRoots = new ArrayList<>();
    nestedRoots.add(aggOpRef);
    nestedPlans.add(new ALogicalPlanImpl(nestedRoots));
    groupbyOp.getInputs().add(new MutableObject<>(leftOuterJoinOp));
    // Replaces subplan with the group-by operator.
    opRef.setValue(groupbyOp);
    OperatorManipulationUtil.computeTypeEnvironmentBottomUp(groupbyOp, context);
    // Recursively applys this rule to the nested plan of the subplan operator,
    // for the case where there are nested subplan operators within {@code subplanOp}.
    Pair<Boolean, LinkedHashMap<LogicalVariable, LogicalVariable>> result = rewriteSubplanOperator(rightInputOpRef, context);
    VariableUtilities.substituteVariables(leftOuterJoinOp, result.second, context);
    VariableUtilities.substituteVariables(groupbyOp, result.second, context);
    // No var mapping from the right input operator should be populated up.
    return new Pair<>(true, replacedVarMap);
}
Also used : NestedTupleSourceOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.NestedTupleSourceOperator) HashSet(java.util.HashSet) ImmutableSet(com.google.common.collect.ImmutableSet) Set(java.util.Set) ArrayList(java.util.ArrayList) LeftOuterJoinOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.LeftOuterJoinOperator) LinkedHashMap(java.util.LinkedHashMap) SubplanOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.SubplanOperator) SelectOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.SelectOperator) ALogicalPlanImpl(org.apache.hyracks.algebricks.core.algebra.plan.ALogicalPlanImpl) ArrayList(java.util.ArrayList) List(java.util.List) Pair(org.apache.hyracks.algebricks.common.utils.Pair) HashSet(java.util.HashSet) ScalarFunctionCallExpression(org.apache.hyracks.algebricks.core.algebra.expressions.ScalarFunctionCallExpression) MutableObject(org.apache.commons.lang3.mutable.MutableObject) LogicalVariable(org.apache.hyracks.algebricks.core.algebra.base.LogicalVariable) GroupByOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.GroupByOperator) IOrder(org.apache.hyracks.algebricks.core.algebra.operators.logical.OrderOperator.IOrder) ILogicalOperator(org.apache.hyracks.algebricks.core.algebra.base.ILogicalOperator) OrderOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.OrderOperator) AssignOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.AssignOperator) Mutable(org.apache.commons.lang3.mutable.Mutable) ILogicalExpression(org.apache.hyracks.algebricks.core.algebra.base.ILogicalExpression) VariableReferenceExpression(org.apache.hyracks.algebricks.core.algebra.expressions.VariableReferenceExpression) ILogicalPlan(org.apache.hyracks.algebricks.core.algebra.base.ILogicalPlan) LinkedHashMap(java.util.LinkedHashMap) Map(java.util.Map)

Example 63 with AssignOperator

use of org.apache.hyracks.algebricks.core.algebra.operators.logical.AssignOperator in project asterixdb by apache.

the class InvertedIndexAccessMethod method createSecondaryToPrimaryPlan.

@Override
public ILogicalOperator createSecondaryToPrimaryPlan(Mutable<ILogicalExpression> conditionRef, OptimizableOperatorSubTree indexSubTree, OptimizableOperatorSubTree probeSubTree, Index chosenIndex, AccessMethodAnalysisContext analysisCtx, boolean retainInput, boolean retainNull, boolean requiresBroadcast, IOptimizationContext context) throws AlgebricksException {
    IOptimizableFuncExpr optFuncExpr = AccessMethodUtils.chooseFirstOptFuncExpr(chosenIndex, analysisCtx);
    Dataset dataset = indexSubTree.getDataset();
    ARecordType recordType = indexSubTree.getRecordType();
    ARecordType metaRecordType = indexSubTree.getMetaRecordType();
    // we made sure indexSubTree has datasource scan
    DataSourceScanOperator dataSourceScan = (DataSourceScanOperator) indexSubTree.getDataSourceRef().getValue();
    InvertedIndexJobGenParams jobGenParams = new InvertedIndexJobGenParams(chosenIndex.getIndexName(), chosenIndex.getIndexType(), dataset.getDataverseName(), dataset.getDatasetName(), retainInput, requiresBroadcast);
    // Add function-specific args such as search modifier, and possibly a similarity threshold.
    addFunctionSpecificArgs(optFuncExpr, jobGenParams);
    // Add the type of search key from the optFuncExpr.
    addSearchKeyType(optFuncExpr, indexSubTree, context, jobGenParams);
    // Operator that feeds the secondary-index search.
    AbstractLogicalOperator inputOp = null;
    // Here we generate vars and funcs for assigning the secondary-index keys to be fed into the secondary-index search.
    // List of variables for the assign.
    ArrayList<LogicalVariable> keyVarList = new ArrayList<LogicalVariable>();
    // probeSubTree is null if we are dealing with a selection query, and non-null for join queries.
    if (probeSubTree == null) {
        // List of expressions for the assign.
        ArrayList<Mutable<ILogicalExpression>> keyExprList = new ArrayList<Mutable<ILogicalExpression>>();
        // Add key vars and exprs to argument list.
        addKeyVarsAndExprs(optFuncExpr, keyVarList, keyExprList, context);
        // Assign operator that sets the secondary-index search-key fields.
        inputOp = new AssignOperator(keyVarList, keyExprList);
        // Input to this assign is the EmptyTupleSource (which the dataSourceScan also must have had as input).
        inputOp.getInputs().add(new MutableObject<>(OperatorManipulationUtil.deepCopy(dataSourceScan.getInputs().get(0).getValue())));
        inputOp.setExecutionMode(dataSourceScan.getExecutionMode());
    } else {
        // We are optimizing a join. Add the input variable to the secondaryIndexFuncArgs.
        LogicalVariable inputSearchVariable = getInputSearchVar(optFuncExpr, indexSubTree);
        keyVarList.add(inputSearchVariable);
        inputOp = (AbstractLogicalOperator) probeSubTree.getRoot();
    }
    jobGenParams.setKeyVarList(keyVarList);
    ILogicalOperator secondaryIndexUnnestOp = AccessMethodUtils.createSecondaryIndexUnnestMap(dataset, recordType, metaRecordType, chosenIndex, inputOp, jobGenParams, context, true, retainInput, retainNull);
    // Generate the rest of the upstream plan which feeds the search results into the primary index.
    AbstractUnnestMapOperator primaryIndexUnnestOp = AccessMethodUtils.createPrimaryIndexUnnestMap(dataSourceScan, dataset, recordType, metaRecordType, secondaryIndexUnnestOp, context, true, retainInput, retainNull, false);
    return primaryIndexUnnestOp;
}
Also used : LogicalVariable(org.apache.hyracks.algebricks.core.algebra.base.LogicalVariable) AbstractLogicalOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractLogicalOperator) Dataset(org.apache.asterix.metadata.entities.Dataset) ILogicalOperator(org.apache.hyracks.algebricks.core.algebra.base.ILogicalOperator) ArrayList(java.util.ArrayList) AssignOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.AssignOperator) Mutable(org.apache.commons.lang3.mutable.Mutable) ILogicalExpression(org.apache.hyracks.algebricks.core.algebra.base.ILogicalExpression) DataSourceScanOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.DataSourceScanOperator) AbstractUnnestMapOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractUnnestMapOperator) ARecordType(org.apache.asterix.om.types.ARecordType)

Example 64 with AssignOperator

use of org.apache.hyracks.algebricks.core.algebra.operators.logical.AssignOperator in project asterixdb by apache.

the class InvertedIndexAccessMethod method findTokensFunc.

private ScalarFunctionCallExpression findTokensFunc(FunctionIdentifier funcId, IOptimizableFuncExpr optFuncExpr, int subTreeIndex) {
    //find either a gram-tokens or a word-tokens function that exists in optFuncExpr.subTrees' assignsAndUnnests
    OptimizableOperatorSubTree subTree = null;
    LogicalVariable targetVar = null;
    subTree = optFuncExpr.getOperatorSubTree(subTreeIndex);
    if (subTree == null) {
        return null;
    }
    targetVar = optFuncExpr.getLogicalVar(subTreeIndex);
    if (targetVar == null) {
        return null;
    }
    for (AbstractLogicalOperator op : subTree.getAssignsAndUnnests()) {
        if (op.getOperatorTag() != LogicalOperatorTag.ASSIGN) {
            continue;
        }
        List<Mutable<ILogicalExpression>> exprList = ((AssignOperator) op).getExpressions();
        for (Mutable<ILogicalExpression> expr : exprList) {
            if (expr.getValue().getExpressionTag() != LogicalExpressionTag.FUNCTION_CALL) {
                continue;
            }
            AbstractFunctionCallExpression funcExpr = (AbstractFunctionCallExpression) expr.getValue();
            if (funcExpr.getFunctionIdentifier() != funcId) {
                continue;
            }
            ILogicalExpression varExpr = funcExpr.getArguments().get(0).getValue();
            if (varExpr.getExpressionTag() != LogicalExpressionTag.VARIABLE) {
                continue;
            }
            if (((VariableReferenceExpression) varExpr).getVariableReference() == targetVar) {
                continue;
            }
            return (ScalarFunctionCallExpression) funcExpr;
        }
    }
    return null;
}
Also used : LogicalVariable(org.apache.hyracks.algebricks.core.algebra.base.LogicalVariable) Mutable(org.apache.commons.lang3.mutable.Mutable) ILogicalExpression(org.apache.hyracks.algebricks.core.algebra.base.ILogicalExpression) AbstractLogicalOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractLogicalOperator) AbstractFunctionCallExpression(org.apache.hyracks.algebricks.core.algebra.expressions.AbstractFunctionCallExpression) AssignOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.AssignOperator) ScalarFunctionCallExpression(org.apache.hyracks.algebricks.core.algebra.expressions.ScalarFunctionCallExpression)

Example 65 with AssignOperator

use of org.apache.hyracks.algebricks.core.algebra.operators.logical.AssignOperator in project asterixdb by apache.

the class IntroduceLSMComponentFilterRule method changePlan.

private void changePlan(List<IOptimizableFuncExpr> optFuncExprs, AbstractLogicalOperator op, Dataset dataset, IOptimizationContext context) throws AlgebricksException {
    Queue<Mutable<ILogicalOperator>> queue = new LinkedList<>(op.getInputs());
    while (!queue.isEmpty()) {
        AbstractLogicalOperator descendantOp = (AbstractLogicalOperator) queue.poll().getValue();
        if (descendantOp == null) {
            continue;
        }
        if (descendantOp.getOperatorTag() == LogicalOperatorTag.DATASOURCESCAN) {
            DataSourceScanOperator dataSourceScanOp = (DataSourceScanOperator) descendantOp;
            DataSource ds = (DataSource) dataSourceScanOp.getDataSource();
            if (dataset.getDatasetName().compareTo(((DatasetDataSource) ds).getDataset().getDatasetName()) == 0) {
                List<LogicalVariable> minFilterVars = new ArrayList<>();
                List<LogicalVariable> maxFilterVars = new ArrayList<>();
                AssignOperator assignOp = createAssignOperator(optFuncExprs, minFilterVars, maxFilterVars, context);
                dataSourceScanOp.setMinFilterVars(minFilterVars);
                dataSourceScanOp.setMaxFilterVars(maxFilterVars);
                List<Mutable<ILogicalExpression>> additionalFilteringExpressions = new ArrayList<>();
                for (LogicalVariable var : assignOp.getVariables()) {
                    additionalFilteringExpressions.add(new MutableObject<ILogicalExpression>(new VariableReferenceExpression(var)));
                }
                dataSourceScanOp.setAdditionalFilteringExpressions(additionalFilteringExpressions);
                assignOp.getInputs().add(new MutableObject<>(dataSourceScanOp.getInputs().get(0).getValue()));
                dataSourceScanOp.getInputs().get(0).setValue(assignOp);
            }
        } else if (descendantOp.getOperatorTag() == LogicalOperatorTag.UNNEST_MAP) {
            UnnestMapOperator unnestMapOp = (UnnestMapOperator) descendantOp;
            ILogicalExpression unnestExpr = unnestMapOp.getExpressionRef().getValue();
            if (unnestExpr.getExpressionTag() == LogicalExpressionTag.FUNCTION_CALL) {
                AbstractFunctionCallExpression f = (AbstractFunctionCallExpression) unnestExpr;
                FunctionIdentifier fid = f.getFunctionIdentifier();
                if (!fid.equals(BuiltinFunctions.INDEX_SEARCH)) {
                    throw new IllegalStateException();
                }
                AccessMethodJobGenParams jobGenParams = new AccessMethodJobGenParams();
                jobGenParams.readFromFuncArgs(f.getArguments());
                if (dataset.getDatasetName().compareTo(jobGenParams.datasetName) == 0) {
                    List<LogicalVariable> minFilterVars = new ArrayList<>();
                    List<LogicalVariable> maxFilterVars = new ArrayList<>();
                    AssignOperator assignOp = createAssignOperator(optFuncExprs, minFilterVars, maxFilterVars, context);
                    unnestMapOp.setMinFilterVars(minFilterVars);
                    unnestMapOp.setMaxFilterVars(maxFilterVars);
                    List<Mutable<ILogicalExpression>> additionalFilteringExpressions = new ArrayList<>();
                    for (LogicalVariable var : assignOp.getVariables()) {
                        additionalFilteringExpressions.add(new MutableObject<ILogicalExpression>(new VariableReferenceExpression(var)));
                    }
                    unnestMapOp.setAdditionalFilteringExpressions(additionalFilteringExpressions);
                    assignOp.getInputs().add(new MutableObject<>(unnestMapOp.getInputs().get(0).getValue()));
                    unnestMapOp.getInputs().get(0).setValue(assignOp);
                }
            }
        }
        queue.addAll(descendantOp.getInputs());
    }
}
Also used : LogicalVariable(org.apache.hyracks.algebricks.core.algebra.base.LogicalVariable) AbstractLogicalOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractLogicalOperator) UnnestMapOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.UnnestMapOperator) AbstractFunctionCallExpression(org.apache.hyracks.algebricks.core.algebra.expressions.AbstractFunctionCallExpression) ArrayList(java.util.ArrayList) AssignOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.AssignOperator) LinkedList(java.util.LinkedList) DataSource(org.apache.asterix.metadata.declared.DataSource) DatasetDataSource(org.apache.asterix.metadata.declared.DatasetDataSource) Mutable(org.apache.commons.lang3.mutable.Mutable) FunctionIdentifier(org.apache.hyracks.algebricks.core.algebra.functions.FunctionIdentifier) ILogicalExpression(org.apache.hyracks.algebricks.core.algebra.base.ILogicalExpression) DataSourceScanOperator(org.apache.hyracks.algebricks.core.algebra.operators.logical.DataSourceScanOperator) VariableReferenceExpression(org.apache.hyracks.algebricks.core.algebra.expressions.VariableReferenceExpression) ArrayList(java.util.ArrayList) LinkedList(java.util.LinkedList) List(java.util.List) MutableObject(org.apache.commons.lang3.mutable.MutableObject)

Aggregations

AssignOperator (org.apache.hyracks.algebricks.core.algebra.operators.logical.AssignOperator)95 LogicalVariable (org.apache.hyracks.algebricks.core.algebra.base.LogicalVariable)79 ILogicalExpression (org.apache.hyracks.algebricks.core.algebra.base.ILogicalExpression)75 ILogicalOperator (org.apache.hyracks.algebricks.core.algebra.base.ILogicalOperator)58 Mutable (org.apache.commons.lang3.mutable.Mutable)56 VariableReferenceExpression (org.apache.hyracks.algebricks.core.algebra.expressions.VariableReferenceExpression)52 AbstractLogicalOperator (org.apache.hyracks.algebricks.core.algebra.operators.logical.AbstractLogicalOperator)42 ArrayList (java.util.ArrayList)41 AbstractFunctionCallExpression (org.apache.hyracks.algebricks.core.algebra.expressions.AbstractFunctionCallExpression)41 ScalarFunctionCallExpression (org.apache.hyracks.algebricks.core.algebra.expressions.ScalarFunctionCallExpression)32 Pair (org.apache.hyracks.algebricks.common.utils.Pair)30 MutableObject (org.apache.commons.lang3.mutable.MutableObject)24 ConstantExpression (org.apache.hyracks.algebricks.core.algebra.expressions.ConstantExpression)24 GbyVariableExpressionPair (org.apache.asterix.lang.common.expression.GbyVariableExpressionPair)19 QuantifiedPair (org.apache.asterix.lang.common.struct.QuantifiedPair)14 AsterixConstantValue (org.apache.asterix.om.constants.AsterixConstantValue)14 UnnestingFunctionCallExpression (org.apache.hyracks.algebricks.core.algebra.expressions.UnnestingFunctionCallExpression)14 List (java.util.List)12 AString (org.apache.asterix.om.base.AString)12 AggregateFunctionCallExpression (org.apache.hyracks.algebricks.core.algebra.expressions.AggregateFunctionCallExpression)12