use of org.apache.sysml.runtime.instructions.spark.data.PartitionedBroadcast in project systemml by apache.
the class SparkExecutionContext method getBroadcastForFrameVariable.
@SuppressWarnings("unchecked")
public PartitionedBroadcast<FrameBlock> getBroadcastForFrameVariable(String varname) {
long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0;
FrameObject fo = getFrameObject(varname);
PartitionedBroadcast<FrameBlock> bret = null;
// reuse existing broadcast handle
if (fo.getBroadcastHandle() != null && fo.getBroadcastHandle().isValid()) {
bret = fo.getBroadcastHandle().getBroadcast();
}
// create new broadcast handle (never created, evicted)
if (bret == null) {
// account for overwritten invalid broadcast (e.g., evicted)
if (fo.getBroadcastHandle() != null)
CacheableData.addBroadcastSize(-fo.getBroadcastHandle().getSize());
// obtain meta data for frame
int bclen = (int) fo.getNumColumns();
int brlen = OptimizerUtils.getDefaultFrameSize();
// create partitioned frame block and release memory consumed by input
FrameBlock mb = fo.acquireRead();
PartitionedBlock<FrameBlock> pmb = new PartitionedBlock<>(mb, brlen, bclen);
fo.release();
// determine coarse-grained partitioning
int numPerPart = PartitionedBroadcast.computeBlocksPerPartition(fo.getNumRows(), fo.getNumColumns(), brlen, bclen);
int numParts = (int) Math.ceil((double) pmb.getNumRowBlocks() * pmb.getNumColumnBlocks() / numPerPart);
Broadcast<PartitionedBlock<FrameBlock>>[] ret = new Broadcast[numParts];
// create coarse-grained partitioned broadcasts
if (numParts > 1) {
for (int i = 0; i < numParts; i++) {
int offset = i * numPerPart;
int numBlks = Math.min(numPerPart, pmb.getNumRowBlocks() * pmb.getNumColumnBlocks() - offset);
PartitionedBlock<FrameBlock> tmp = pmb.createPartition(offset, numBlks, new FrameBlock());
ret[i] = getSparkContext().broadcast(tmp);
if (!isLocalMaster())
tmp.clearBlocks();
}
} else {
// single partition
ret[0] = getSparkContext().broadcast(pmb);
if (!isLocalMaster())
pmb.clearBlocks();
}
bret = new PartitionedBroadcast<>(ret, fo.getMatrixCharacteristics());
BroadcastObject<FrameBlock> bchandle = new BroadcastObject<>(bret, OptimizerUtils.estimatePartitionedSizeExactSparsity(fo.getMatrixCharacteristics()));
fo.setBroadcastHandle(bchandle);
CacheableData.addBroadcastSize(bchandle.getSize());
}
if (DMLScript.STATISTICS) {
Statistics.accSparkBroadCastTime(System.nanoTime() - t0);
Statistics.incSparkBroadcastCount(1);
}
return bret;
}
use of org.apache.sysml.runtime.instructions.spark.data.PartitionedBroadcast in project systemml by apache.
the class SparkExecutionContext method getBroadcastForVariable.
@SuppressWarnings("unchecked")
public PartitionedBroadcast<MatrixBlock> getBroadcastForVariable(String varname) {
// NOTE: The memory consumption of this method is the in-memory size of the
// matrix object plus the partitioned size in 1k-1k blocks. Since the call
// to broadcast happens after the matrix object has been released, the memory
// requirements of blockified chunks in Spark's block manager are covered under
// this maximum. Also note that we explicitly clear the in-memory blocks once
// the broadcasts are created (other than in local mode) in order to avoid
// unnecessary memory requirements during the lifetime of this broadcast handle.
long t0 = DMLScript.STATISTICS ? System.nanoTime() : 0;
MatrixObject mo = getMatrixObject(varname);
PartitionedBroadcast<MatrixBlock> bret = null;
// reuse existing broadcast handle
if (mo.getBroadcastHandle() != null && mo.getBroadcastHandle().isValid()) {
bret = mo.getBroadcastHandle().getBroadcast();
}
// create new broadcast handle (never created, evicted)
if (bret == null) {
// account for overwritten invalid broadcast (e.g., evicted)
if (mo.getBroadcastHandle() != null)
CacheableData.addBroadcastSize(-mo.getBroadcastHandle().getSize());
// obtain meta data for matrix
int brlen = (int) mo.getNumRowsPerBlock();
int bclen = (int) mo.getNumColumnsPerBlock();
// create partitioned matrix block and release memory consumed by input
MatrixBlock mb = mo.acquireRead();
PartitionedBlock<MatrixBlock> pmb = new PartitionedBlock<>(mb, brlen, bclen);
mo.release();
// determine coarse-grained partitioning
int numPerPart = PartitionedBroadcast.computeBlocksPerPartition(mo.getNumRows(), mo.getNumColumns(), brlen, bclen);
int numParts = (int) Math.ceil((double) pmb.getNumRowBlocks() * pmb.getNumColumnBlocks() / numPerPart);
Broadcast<PartitionedBlock<MatrixBlock>>[] ret = new Broadcast[numParts];
// create coarse-grained partitioned broadcasts
if (numParts > 1) {
for (int i = 0; i < numParts; i++) {
int offset = i * numPerPart;
int numBlks = Math.min(numPerPart, pmb.getNumRowBlocks() * pmb.getNumColumnBlocks() - offset);
PartitionedBlock<MatrixBlock> tmp = pmb.createPartition(offset, numBlks, new MatrixBlock());
ret[i] = getSparkContext().broadcast(tmp);
if (!isLocalMaster())
tmp.clearBlocks();
}
} else {
// single partition
ret[0] = getSparkContext().broadcast(pmb);
if (!isLocalMaster())
pmb.clearBlocks();
}
bret = new PartitionedBroadcast<>(ret, mo.getMatrixCharacteristics());
BroadcastObject<MatrixBlock> bchandle = new BroadcastObject<>(bret, OptimizerUtils.estimatePartitionedSizeExactSparsity(mo.getMatrixCharacteristics()));
mo.setBroadcastHandle(bchandle);
CacheableData.addBroadcastSize(bchandle.getSize());
}
if (DMLScript.STATISTICS) {
Statistics.accSparkBroadCastTime(System.nanoTime() - t0);
Statistics.incSparkBroadcastCount(1);
}
return bret;
}
use of org.apache.sysml.runtime.instructions.spark.data.PartitionedBroadcast in project systemml by apache.
the class FrameIndexingSPInstruction method processInstruction.
@Override
public void processInstruction(ExecutionContext ec) {
SparkExecutionContext sec = (SparkExecutionContext) ec;
String opcode = getOpcode();
// get indexing range
long rl = ec.getScalarInput(rowLower.getName(), rowLower.getValueType(), rowLower.isLiteral()).getLongValue();
long ru = ec.getScalarInput(rowUpper.getName(), rowUpper.getValueType(), rowUpper.isLiteral()).getLongValue();
long cl = ec.getScalarInput(colLower.getName(), colLower.getValueType(), colLower.isLiteral()).getLongValue();
long cu = ec.getScalarInput(colUpper.getName(), colUpper.getValueType(), colUpper.isLiteral()).getLongValue();
IndexRange ixrange = new IndexRange(rl, ru, cl, cu);
// right indexing
if (opcode.equalsIgnoreCase(RightIndex.OPCODE)) {
// update and check output dimensions
MatrixCharacteristics mcIn = sec.getMatrixCharacteristics(input1.getName());
MatrixCharacteristics mcOut = sec.getMatrixCharacteristics(output.getName());
mcOut.set(ru - rl + 1, cu - cl + 1, mcIn.getRowsPerBlock(), mcIn.getColsPerBlock());
checkValidOutputDimensions(mcOut);
// execute right indexing operation (partitioning-preserving if possible)
JavaPairRDD<Long, FrameBlock> in1 = sec.getFrameBinaryBlockRDDHandleForVariable(input1.getName());
JavaPairRDD<Long, FrameBlock> out = null;
if (isPartitioningPreservingRightIndexing(mcIn, ixrange)) {
out = in1.mapPartitionsToPair(new SliceBlockPartitionFunction(ixrange, mcOut), true);
} else {
out = in1.filter(new IsFrameBlockInRange(rl, ru, mcOut)).mapToPair(new SliceBlock(ixrange, mcOut));
}
// put output RDD handle into symbol table
sec.setRDDHandleForVariable(output.getName(), out);
sec.addLineageRDD(output.getName(), input1.getName());
// update schema of output with subset of input schema
sec.getFrameObject(output.getName()).setSchema(sec.getFrameObject(input1.getName()).getSchema((int) cl, (int) cu));
} else // left indexing
if (opcode.equalsIgnoreCase(LeftIndex.OPCODE) || opcode.equalsIgnoreCase("mapLeftIndex")) {
JavaPairRDD<Long, FrameBlock> in1 = sec.getFrameBinaryBlockRDDHandleForVariable(input1.getName());
PartitionedBroadcast<FrameBlock> broadcastIn2 = null;
JavaPairRDD<Long, FrameBlock> in2 = null;
JavaPairRDD<Long, FrameBlock> out = null;
// update and check output dimensions
MatrixCharacteristics mcOut = sec.getMatrixCharacteristics(output.getName());
MatrixCharacteristics mcLeft = ec.getMatrixCharacteristics(input1.getName());
mcOut.set(mcLeft.getRows(), mcLeft.getCols(), mcLeft.getRowsPerBlock(), mcLeft.getColsPerBlock());
checkValidOutputDimensions(mcOut);
// note: always frame rhs, scalars are preprocessed via cast to 1x1 frame
MatrixCharacteristics mcRight = ec.getMatrixCharacteristics(input2.getName());
// sanity check matching index range and rhs dimensions
if (!mcRight.dimsKnown()) {
throw new DMLRuntimeException("The right input frame dimensions are not specified for FrameIndexingSPInstruction");
}
if (!(ru - rl + 1 == mcRight.getRows() && cu - cl + 1 == mcRight.getCols())) {
throw new DMLRuntimeException("Invalid index range of leftindexing: [" + rl + ":" + ru + "," + cl + ":" + cu + "] vs [" + mcRight.getRows() + "x" + mcRight.getCols() + "].");
}
if (opcode.equalsIgnoreCase("mapLeftIndex")) {
broadcastIn2 = sec.getBroadcastForFrameVariable(input2.getName());
// partitioning-preserving mappartitions (key access required for broadcast loopkup)
out = in1.mapPartitionsToPair(new LeftIndexPartitionFunction(broadcastIn2, ixrange, mcOut), true);
} else {
// general case
// zero-out lhs
in1 = in1.flatMapToPair(new ZeroOutLHS(false, ixrange, mcLeft));
// slice rhs, shift and merge with lhs
in2 = sec.getFrameBinaryBlockRDDHandleForVariable(input2.getName()).flatMapToPair(new SliceRHSForLeftIndexing(ixrange, mcLeft));
out = FrameRDDAggregateUtils.mergeByKey(in1.union(in2));
}
sec.setRDDHandleForVariable(output.getName(), out);
sec.addLineageRDD(output.getName(), input1.getName());
if (broadcastIn2 != null)
sec.addLineageBroadcast(output.getName(), input2.getName());
if (in2 != null)
sec.addLineageRDD(output.getName(), input2.getName());
} else
throw new DMLRuntimeException("Invalid opcode (" + opcode + ") encountered in FrameIndexingSPInstruction.");
}
use of org.apache.sysml.runtime.instructions.spark.data.PartitionedBroadcast in project systemml by apache.
the class SpoofSPInstruction method processInstruction.
@Override
public void processInstruction(ExecutionContext ec) {
SparkExecutionContext sec = (SparkExecutionContext) ec;
// decide upon broadcast side inputs
boolean[] bcVect = determineBroadcastInputs(sec, _in);
boolean[] bcVect2 = getMatrixBroadcastVector(sec, _in, bcVect);
int main = getMainInputIndex(_in, bcVect);
// create joined input rdd w/ replication if needed
MatrixCharacteristics mcIn = sec.getMatrixCharacteristics(_in[main].getName());
JavaPairRDD<MatrixIndexes, MatrixBlock[]> in = createJoinedInputRDD(sec, _in, bcVect, (_class.getSuperclass() == SpoofOuterProduct.class));
JavaPairRDD<MatrixIndexes, MatrixBlock> out = null;
// create lists of input broadcasts and scalars
ArrayList<PartitionedBroadcast<MatrixBlock>> bcMatrices = new ArrayList<>();
ArrayList<ScalarObject> scalars = new ArrayList<>();
for (int i = 0; i < _in.length; i++) {
if (_in[i].getDataType() == DataType.MATRIX && bcVect[i]) {
bcMatrices.add(sec.getBroadcastForVariable(_in[i].getName()));
} else if (_in[i].getDataType() == DataType.SCALAR) {
// note: even if literal, it might be compiled as scalar placeholder
scalars.add(sec.getScalarInput(_in[i].getName(), _in[i].getValueType(), _in[i].isLiteral()));
}
}
// execute generated operator
if (// CELL
_class.getSuperclass() == SpoofCellwise.class) {
SpoofCellwise op = (SpoofCellwise) CodegenUtils.createInstance(_class);
AggregateOperator aggop = getAggregateOperator(op.getAggOp());
if (_out.getDataType() == DataType.MATRIX) {
// execute codegen block operation
out = in.mapPartitionsToPair(new CellwiseFunction(_class.getName(), _classBytes, bcVect2, bcMatrices, scalars), true);
if ((op.getCellType() == CellType.ROW_AGG && mcIn.getCols() > mcIn.getColsPerBlock()) || (op.getCellType() == CellType.COL_AGG && mcIn.getRows() > mcIn.getRowsPerBlock())) {
long numBlocks = (op.getCellType() == CellType.ROW_AGG) ? mcIn.getNumRowBlocks() : mcIn.getNumColBlocks();
out = RDDAggregateUtils.aggByKeyStable(out, aggop, (int) Math.min(out.getNumPartitions(), numBlocks), false);
}
sec.setRDDHandleForVariable(_out.getName(), out);
// maintain lineage info and output characteristics
maintainLineageInfo(sec, _in, bcVect, _out);
updateOutputMatrixCharacteristics(sec, op);
} else {
// SCALAR
out = in.mapPartitionsToPair(new CellwiseFunction(_class.getName(), _classBytes, bcVect2, bcMatrices, scalars), true);
MatrixBlock tmpMB = RDDAggregateUtils.aggStable(out, aggop);
sec.setVariable(_out.getName(), new DoubleObject(tmpMB.getValue(0, 0)));
}
} else if (// MAGG
_class.getSuperclass() == SpoofMultiAggregate.class) {
SpoofMultiAggregate op = (SpoofMultiAggregate) CodegenUtils.createInstance(_class);
AggOp[] aggOps = op.getAggOps();
MatrixBlock tmpMB = in.mapToPair(new MultiAggregateFunction(_class.getName(), _classBytes, bcVect2, bcMatrices, scalars)).values().fold(new MatrixBlock(), new MultiAggAggregateFunction(aggOps));
sec.setMatrixOutput(_out.getName(), tmpMB, getExtendedOpcode());
} else if (// OUTER
_class.getSuperclass() == SpoofOuterProduct.class) {
if (_out.getDataType() == DataType.MATRIX) {
SpoofOperator op = (SpoofOperator) CodegenUtils.createInstance(_class);
OutProdType type = ((SpoofOuterProduct) op).getOuterProdType();
// update matrix characteristics
updateOutputMatrixCharacteristics(sec, op);
MatrixCharacteristics mcOut = sec.getMatrixCharacteristics(_out.getName());
out = in.mapPartitionsToPair(new OuterProductFunction(_class.getName(), _classBytes, bcVect2, bcMatrices, scalars), true);
if (type == OutProdType.LEFT_OUTER_PRODUCT || type == OutProdType.RIGHT_OUTER_PRODUCT) {
long numBlocks = mcOut.getNumRowBlocks() * mcOut.getNumColBlocks();
out = RDDAggregateUtils.sumByKeyStable(out, (int) Math.min(out.getNumPartitions(), numBlocks), false);
}
sec.setRDDHandleForVariable(_out.getName(), out);
// maintain lineage info and output characteristics
maintainLineageInfo(sec, _in, bcVect, _out);
} else {
out = in.mapPartitionsToPair(new OuterProductFunction(_class.getName(), _classBytes, bcVect2, bcMatrices, scalars), true);
MatrixBlock tmp = RDDAggregateUtils.sumStable(out);
sec.setVariable(_out.getName(), new DoubleObject(tmp.getValue(0, 0)));
}
} else if (_class.getSuperclass() == SpoofRowwise.class) {
// ROW
if (mcIn.getCols() > mcIn.getColsPerBlock()) {
throw new DMLRuntimeException("Invalid spark rowwise operator w/ ncol=" + mcIn.getCols() + ", ncolpb=" + mcIn.getColsPerBlock() + ".");
}
SpoofRowwise op = (SpoofRowwise) CodegenUtils.createInstance(_class);
long clen2 = op.getRowType().isConstDim2(op.getConstDim2()) ? op.getConstDim2() : op.getRowType().isRowTypeB1() ? sec.getMatrixCharacteristics(_in[1].getName()).getCols() : -1;
RowwiseFunction fmmc = new RowwiseFunction(_class.getName(), _classBytes, bcVect2, bcMatrices, scalars, (int) mcIn.getCols(), (int) clen2);
out = in.mapPartitionsToPair(fmmc, op.getRowType() == RowType.ROW_AGG || op.getRowType() == RowType.NO_AGG);
if (op.getRowType().isColumnAgg() || op.getRowType() == RowType.FULL_AGG) {
MatrixBlock tmpMB = RDDAggregateUtils.sumStable(out);
if (op.getRowType().isColumnAgg())
sec.setMatrixOutput(_out.getName(), tmpMB, getExtendedOpcode());
else
sec.setScalarOutput(_out.getName(), new DoubleObject(tmpMB.quickGetValue(0, 0)));
} else // row-agg or no-agg
{
if (op.getRowType() == RowType.ROW_AGG && mcIn.getCols() > mcIn.getColsPerBlock()) {
out = RDDAggregateUtils.sumByKeyStable(out, (int) Math.min(out.getNumPartitions(), mcIn.getNumRowBlocks()), false);
}
sec.setRDDHandleForVariable(_out.getName(), out);
// maintain lineage info and output characteristics
maintainLineageInfo(sec, _in, bcVect, _out);
updateOutputMatrixCharacteristics(sec, op);
}
} else {
throw new DMLRuntimeException("Operator " + _class.getSuperclass() + " is not supported on Spark");
}
}
Aggregations