use of org.bouncycastle.crypto.InvalidCipherTextException in project robovm by robovm.
the class BaseBlockCipher method engineDoFinal.
protected byte[] engineDoFinal(byte[] input, int inputOffset, int inputLen) throws IllegalBlockSizeException, BadPaddingException {
int len = 0;
byte[] tmp = new byte[engineGetOutputSize(inputLen)];
if (inputLen != 0) {
len = cipher.processBytes(input, inputOffset, inputLen, tmp, 0);
}
try {
len += cipher.doFinal(tmp, len);
} catch (DataLengthException e) {
throw new IllegalBlockSizeException(e.getMessage());
} catch (InvalidCipherTextException e) {
throw new BadPaddingException(e.getMessage());
}
if (len == tmp.length) {
return tmp;
}
byte[] out = new byte[len];
System.arraycopy(tmp, 0, out, 0, len);
return out;
}
use of org.bouncycastle.crypto.InvalidCipherTextException in project robovm by robovm.
the class DESedeWrapEngine method unwrap.
/**
* Method unwrap
*
* @param in
* @param inOff
* @param inLen
* @return the unwrapped bytes.
* @throws InvalidCipherTextException
*/
public byte[] unwrap(byte[] in, int inOff, int inLen) throws InvalidCipherTextException {
if (forWrapping) {
throw new IllegalStateException("Not set for unwrapping");
}
if (in == null) {
throw new InvalidCipherTextException("Null pointer as ciphertext");
}
final int blockSize = engine.getBlockSize();
if (inLen % blockSize != 0) {
throw new InvalidCipherTextException("Ciphertext not multiple of " + blockSize);
}
/*
// Check if the length of the cipher text is reasonable given the key
// type. It must be 40 bytes for a 168 bit key and either 32, 40, or
// 48 bytes for a 128, 192, or 256 bit key. If the length is not supported
// or inconsistent with the algorithm for which the key is intended,
// return error.
//
// we do not accept 168 bit keys. it has to be 192 bit.
int lengthA = (estimatedKeyLengthInBit / 8) + 16;
int lengthB = estimatedKeyLengthInBit % 8;
if ((lengthA != keyToBeUnwrapped.length) || (lengthB != 0)) {
throw new XMLSecurityException("empty");
}
*/
// Decrypt the cipher text with TRIPLedeS in CBC mode using the KEK
// and an initialization vector (IV) of 0x4adda22c79e82105. Call the output TEMP3.
ParametersWithIV param2 = new ParametersWithIV(this.param, IV2);
this.engine.init(false, param2);
byte[] TEMP3 = new byte[inLen];
for (int currentBytePos = 0; currentBytePos != inLen; currentBytePos += blockSize) {
engine.processBlock(in, inOff + currentBytePos, TEMP3, currentBytePos);
}
// Reverse the order of the octets in TEMP3 and call the result TEMP2.
byte[] TEMP2 = reverse(TEMP3);
// Decompose TEMP2 into IV, the first 8 octets, and TEMP1, the remaining octets.
this.iv = new byte[8];
byte[] TEMP1 = new byte[TEMP2.length - 8];
System.arraycopy(TEMP2, 0, this.iv, 0, 8);
System.arraycopy(TEMP2, 8, TEMP1, 0, TEMP2.length - 8);
// Decrypt TEMP1 using TRIPLedeS in CBC mode using the KEK and the IV
// found in the previous step. Call the result WKCKS.
this.paramPlusIV = new ParametersWithIV(this.param, this.iv);
this.engine.init(false, this.paramPlusIV);
byte[] WKCKS = new byte[TEMP1.length];
for (int currentBytePos = 0; currentBytePos != WKCKS.length; currentBytePos += blockSize) {
engine.processBlock(TEMP1, currentBytePos, WKCKS, currentBytePos);
}
// Decompose WKCKS. CKS is the last 8 octets and WK, the wrapped key, are
// those octets before the CKS.
byte[] result = new byte[WKCKS.length - 8];
byte[] CKStoBeVerified = new byte[8];
System.arraycopy(WKCKS, 0, result, 0, WKCKS.length - 8);
System.arraycopy(WKCKS, WKCKS.length - 8, CKStoBeVerified, 0, 8);
// with the CKS extracted in the above step. If they are not equal, return error.
if (!checkCMSKeyChecksum(result, CKStoBeVerified)) {
throw new InvalidCipherTextException("Checksum inside ciphertext is corrupted");
}
// WK is the wrapped key, now extracted for use in data decryption.
return result;
}
use of org.bouncycastle.crypto.InvalidCipherTextException in project XobotOS by xamarin.
the class DESedeWrapEngine method unwrap.
/**
* Method unwrap
*
* @param in
* @param inOff
* @param inLen
* @return the unwrapped bytes.
* @throws InvalidCipherTextException
*/
public byte[] unwrap(byte[] in, int inOff, int inLen) throws InvalidCipherTextException {
if (forWrapping) {
throw new IllegalStateException("Not set for unwrapping");
}
if (in == null) {
throw new InvalidCipherTextException("Null pointer as ciphertext");
}
final int blockSize = engine.getBlockSize();
if (inLen % blockSize != 0) {
throw new InvalidCipherTextException("Ciphertext not multiple of " + blockSize);
}
/*
// Check if the length of the cipher text is reasonable given the key
// type. It must be 40 bytes for a 168 bit key and either 32, 40, or
// 48 bytes for a 128, 192, or 256 bit key. If the length is not supported
// or inconsistent with the algorithm for which the key is intended,
// return error.
//
// we do not accept 168 bit keys. it has to be 192 bit.
int lengthA = (estimatedKeyLengthInBit / 8) + 16;
int lengthB = estimatedKeyLengthInBit % 8;
if ((lengthA != keyToBeUnwrapped.length) || (lengthB != 0)) {
throw new XMLSecurityException("empty");
}
*/
// Decrypt the cipher text with TRIPLedeS in CBC mode using the KEK
// and an initialization vector (IV) of 0x4adda22c79e82105. Call the output TEMP3.
ParametersWithIV param2 = new ParametersWithIV(this.param, IV2);
this.engine.init(false, param2);
byte[] TEMP3 = new byte[inLen];
for (int currentBytePos = 0; currentBytePos != inLen; currentBytePos += blockSize) {
engine.processBlock(in, inOff + currentBytePos, TEMP3, currentBytePos);
}
// Reverse the order of the octets in TEMP3 and call the result TEMP2.
byte[] TEMP2 = reverse(TEMP3);
// Decompose TEMP2 into IV, the first 8 octets, and TEMP1, the remaining octets.
this.iv = new byte[8];
byte[] TEMP1 = new byte[TEMP2.length - 8];
System.arraycopy(TEMP2, 0, this.iv, 0, 8);
System.arraycopy(TEMP2, 8, TEMP1, 0, TEMP2.length - 8);
// Decrypt TEMP1 using TRIPLedeS in CBC mode using the KEK and the IV
// found in the previous step. Call the result WKCKS.
this.paramPlusIV = new ParametersWithIV(this.param, this.iv);
this.engine.init(false, this.paramPlusIV);
byte[] WKCKS = new byte[TEMP1.length];
for (int currentBytePos = 0; currentBytePos != WKCKS.length; currentBytePos += blockSize) {
engine.processBlock(TEMP1, currentBytePos, WKCKS, currentBytePos);
}
// Decompose WKCKS. CKS is the last 8 octets and WK, the wrapped key, are
// those octets before the CKS.
byte[] result = new byte[WKCKS.length - 8];
byte[] CKStoBeVerified = new byte[8];
System.arraycopy(WKCKS, 0, result, 0, WKCKS.length - 8);
System.arraycopy(WKCKS, WKCKS.length - 8, CKStoBeVerified, 0, 8);
// with the CKS extracted in the above step. If they are not equal, return error.
if (!checkCMSKeyChecksum(result, CKStoBeVerified)) {
throw new InvalidCipherTextException("Checksum inside ciphertext is corrupted");
}
// WK is the wrapped key, now extracted for use in data decryption.
return result;
}
use of org.bouncycastle.crypto.InvalidCipherTextException in project oxAuth by GluuFederation.
the class JweEncrypterImpl method generateCipherTextAndIntegrityValue.
@Override
public Pair<String, String> generateCipherTextAndIntegrityValue(byte[] contentMasterKey, byte[] initializationVector, byte[] additionalAuthenticatedData, byte[] plainText) throws InvalidJweException {
if (getBlockEncryptionAlgorithm() == null) {
throw new InvalidJweException("The block encryption algorithm is null");
}
if (contentMasterKey == null) {
throw new InvalidJweException("The content master key (CMK) is null");
}
if (initializationVector == null) {
throw new InvalidJweException("The initialization vector is null");
}
if (additionalAuthenticatedData == null) {
throw new InvalidJweException("The additional authentication data is null");
}
if (plainText == null) {
throw new InvalidJweException("The plain text to encrypt is null");
}
try {
if (getBlockEncryptionAlgorithm() == BlockEncryptionAlgorithm.A128GCM || getBlockEncryptionAlgorithm() == BlockEncryptionAlgorithm.A256GCM) {
SecretKey secretKey = new SecretKeySpec(contentMasterKey, "AES");
KeyParameter key = new KeyParameter(contentMasterKey);
final int MAC_SIZE_BITS = 128;
AEADParameters aeadParameters = new AEADParameters(key, MAC_SIZE_BITS, initializationVector, additionalAuthenticatedData);
final int macSize = aeadParameters.getMacSize() / 8;
BlockCipher blockCipher = new AESEngine();
CipherParameters params = new KeyParameter(secretKey.getEncoded());
blockCipher.init(true, params);
GCMBlockCipher aGCMBlockCipher = new GCMBlockCipher(blockCipher);
aGCMBlockCipher.init(true, aeadParameters);
int len = aGCMBlockCipher.getOutputSize(plainText.length);
byte[] out = new byte[len];
int outOff = aGCMBlockCipher.processBytes(plainText, 0, plainText.length, out, 0);
outOff += aGCMBlockCipher.doFinal(out, outOff);
byte[] cipherText = new byte[outOff - macSize];
System.arraycopy(out, 0, cipherText, 0, cipherText.length);
byte[] authenticationTag = new byte[macSize];
System.arraycopy(out, outOff - macSize, authenticationTag, 0, authenticationTag.length);
String encodedCipherText = Base64Util.base64urlencode(cipherText);
String encodedAuthenticationTag = Base64Util.base64urlencode(authenticationTag);
return new Pair<String, String>(encodedCipherText, encodedAuthenticationTag);
} else if (getBlockEncryptionAlgorithm() == BlockEncryptionAlgorithm.A128CBC_PLUS_HS256 || getBlockEncryptionAlgorithm() == BlockEncryptionAlgorithm.A256CBC_PLUS_HS512) {
byte[] cek = KeyDerivationFunction.generateCek(contentMasterKey, getBlockEncryptionAlgorithm());
IvParameterSpec parameters = new IvParameterSpec(initializationVector);
Cipher cipher = Cipher.getInstance(getBlockEncryptionAlgorithm().getAlgorithm(), "BC");
//Cipher cipher = Cipher.getInstance(getBlockEncryptionAlgorithm().getAlgorithm());
SecretKeySpec secretKeySpec = new SecretKeySpec(cek, "AES");
cipher.init(Cipher.ENCRYPT_MODE, secretKeySpec, parameters);
byte[] cipherText = cipher.doFinal(plainText);
String encodedCipherText = Base64Util.base64urlencode(cipherText);
String securedInputValue = new String(additionalAuthenticatedData, Charset.forName(Util.UTF8_STRING_ENCODING)) + "." + encodedCipherText;
byte[] cik = KeyDerivationFunction.generateCik(contentMasterKey, getBlockEncryptionAlgorithm());
SecretKey secretKey = new SecretKeySpec(cik, getBlockEncryptionAlgorithm().getIntegrityValueAlgorithm());
Mac mac = Mac.getInstance(getBlockEncryptionAlgorithm().getIntegrityValueAlgorithm());
mac.init(secretKey);
byte[] integrityValue = mac.doFinal(securedInputValue.getBytes(Util.UTF8_STRING_ENCODING));
String encodedIntegrityValue = Base64Util.base64urlencode(integrityValue);
return new Pair<String, String>(encodedCipherText, encodedIntegrityValue);
} else {
throw new InvalidJweException("The block encryption algorithm is not supported");
}
} catch (InvalidCipherTextException e) {
throw new InvalidJweException(e);
} catch (NoSuchAlgorithmException e) {
throw new InvalidJweException(e);
} catch (UnsupportedEncodingException e) {
throw new InvalidJweException(e);
} catch (NoSuchProviderException e) {
throw new InvalidJweException(e);
} catch (IllegalBlockSizeException e) {
throw new InvalidJweException(e);
} catch (InvalidKeyException e) {
throw new InvalidJweException(e);
} catch (BadPaddingException e) {
throw new InvalidJweException(e);
} catch (InvalidAlgorithmParameterException e) {
throw new InvalidJweException(e);
} catch (NoSuchPaddingException e) {
throw new InvalidJweException(e);
} catch (InvalidParameterException e) {
throw new InvalidJweException(e);
}
}
Aggregations