use of org.broadinstitute.hellbender.tools.exome.TargetCollection in project gatk-protected by broadinstitute.
the class EvaluateCopyNumberTriStateCallsIntegrationTest method checkOutputCallsWithOverlappingTruthConcordance.
private void checkOutputCallsWithOverlappingTruthConcordance(final File truthFile, final File callsFile, final File targetsFile, final File vcfOutput, final EvaluationFiltersArgumentCollection filteringOptions) {
final List<VariantContext> truthVariants = readVCFFile(truthFile);
final List<VariantContext> outputVariants = readVCFFile(vcfOutput);
final List<VariantContext> callsVariants = readVCFFile(callsFile);
final Set<String> outputSamples = outputVariants.get(0).getSampleNames();
final TargetCollection<Target> targets = TargetArgumentCollection.readTargetCollection(targetsFile);
for (final VariantContext truth : truthVariants) {
final List<Target> overlappingTargets = targets.targets(truth);
final List<VariantContext> overlappingOutput = outputVariants.stream().filter(vc -> new SimpleInterval(vc).overlaps(truth)).collect(Collectors.toList());
final List<VariantContext> overlappingCalls = callsVariants.stream().filter(vc -> new SimpleInterval(vc).overlaps(truth)).collect(Collectors.toList());
if (overlappingTargets.isEmpty()) {
Assert.assertTrue(overlappingOutput.isEmpty());
continue;
}
@SuppressWarnings("all") final VariantContext matchingOutput = overlappingOutput.stream().filter(vc -> new SimpleInterval(truth).equals(new SimpleInterval(vc))).findAny().get();
final int[] sampleCallsCount = new int[CopyNumberTriStateAllele.ALL_ALLELES.size()];
for (final String sample : outputSamples) {
final Genotype outputGenotype = matchingOutput.getGenotype(sample);
final List<Pair<VariantContext, Genotype>> sampleCalls = overlappingCalls.stream().map(vc -> new ImmutablePair<>(vc, vc.getGenotype(sample))).filter(p -> XHMMSegmentGenotyper.DISCOVERY_TRUE.equals(p.getRight().getExtendedAttribute(XHMMSegmentGenotyper.DISCOVERY_KEY))).filter(p -> callPassFilters(p.getLeft(), p.getRight(), targets, filteringOptions)).collect(Collectors.toList());
final int[] expectedCounts = new int[CopyNumberTriStateAllele.ALL_ALLELES.size()];
sampleCalls.forEach(p -> {
expectedCounts[CopyNumberTriStateAllele.valueOf(p.getRight().getAllele(0)).index()]++;
});
final int[] actualCounts = GATKProtectedVariantContextUtils.getAttributeAsIntArray(outputGenotype, VariantEvaluationContext.CALLED_ALLELE_COUNTS_KEY, () -> new int[CopyNumberTriStateAllele.ALL_ALLELES.size()], 0);
Assert.assertEquals(actualCounts, expectedCounts, Arrays.toString(actualCounts) + " " + Arrays.toString(expectedCounts));
final int expectedTotalCount = (int) MathUtils.sum(expectedCounts);
final int actualTotalCount = GATKProtectedVariantContextUtils.getAttributeAsInt(outputGenotype, VariantEvaluationContext.CALLED_SEGMENTS_COUNT_KEY, -1);
Assert.assertEquals(actualTotalCount, expectedTotalCount);
final int expectedTargetCount = sampleCalls.stream().mapToInt(p -> targets.targetCount(p.getLeft())).sum();
final int observedTargetCount = GATKProtectedVariantContextUtils.getAttributeAsInt(outputGenotype, VariantEvaluationContext.CALLED_TARGET_COUNT_KEY, -1);
Assert.assertEquals(observedTargetCount, expectedTargetCount);
final Allele truthCallAllele = outputTruthAllele(outputGenotype);
final boolean isMixed = IntStream.of(actualCounts).filter(i -> i > 0).count() > 1;
final String evalClass = GATKProtectedVariantContextUtils.getAttributeAsString(outputGenotype, VariantEvaluationContext.EVALUATION_CLASS_KEY, null);
if (sampleCalls.size() > 0 && !isMixed) {
final Pair<VariantContext, Genotype> bestCall = sampleCalls.stream().sorted((p1, p2) -> -Double.compare(callGQ(p1.getRight()), callGQ(p2.getRight()))).findFirst().get();
final CopyNumberTriStateAllele expectedCall = CopyNumberTriStateAllele.valueOf(bestCall.getRight().getAllele(0));
final CopyNumberTriStateAllele actualCall = CopyNumberTriStateAllele.valueOf(outputGenotype.getAllele(0));
Assert.assertEquals(actualCall, expectedCall);
sampleCallsCount[expectedCall.index()]++;
if (!truthCallAllele.isReference()) {
if (truthCallAllele.equals(actualCall)) {
Assert.assertEquals(evalClass, EvaluationClass.TRUE_POSITIVE.acronym);
} else if (!truthCallAllele.isNoCall()) {
Assert.assertEquals(evalClass, EvaluationClass.DISCORDANT_POSITIVE.acronym);
} else {
Assert.assertNull(evalClass);
}
} else if (truthCallAllele.isReference()) {
Assert.assertEquals(evalClass, EvaluationClass.FALSE_POSITIVE.acronym);
}
} else {
Assert.assertEquals(Allele.NO_CALL, outputGenotype.getAllele(0));
if (sampleCalls.isEmpty()) {
Assert.assertEquals(evalClass, !truthCallAllele.isReference() && truthCallAllele.isCalled() ? EvaluationClass.FALSE_NEGATIVE.acronym : null);
Assert.assertEquals(GATKProtectedVariantContextUtils.getAttributeAsDouble(outputGenotype, VariantEvaluationContext.CALL_QUALITY_KEY, -1), 0.0);
} else {
Assert.assertEquals(evalClass, !truthCallAllele.isReference() && truthCallAllele.isCalled() ? EvaluationClass.MIXED_POSITIVE.acronym : EvaluationClass.FALSE_POSITIVE.acronym);
final Pair<VariantContext, Genotype> bestCall = sampleCalls.stream().sorted((p1, p2) -> -Double.compare(callGQ(p1.getRight()), callGQ(p2.getRight()))).findFirst().get();
Assert.assertEquals(GATKProtectedVariantContextUtils.getAttributeAsDouble(outputGenotype, VariantEvaluationContext.CALL_QUALITY_KEY, -1), callGQ(bestCall.getRight()));
}
}
}
final int expectedAN = (int) MathUtils.sum(sampleCallsCount);
final int observedAN = matchingOutput.getAttributeAsInt(VariantEvaluationContext.CALLS_ALLELE_NUMBER_KEY, -1);
Assert.assertEquals(observedAN, expectedAN);
final double[] expectedAF = Arrays.copyOfRange(IntStream.of(sampleCallsCount).mapToDouble(i -> expectedAN > 0 ? i / (double) expectedAN : 0.0).toArray(), 1, sampleCallsCount.length);
final double[] observedAF = GATKProtectedVariantContextUtils.getAttributeAsDoubleArray(matchingOutput, VariantEvaluationContext.CALLS_ALLELE_FREQUENCY_KEY, () -> new double[matchingOutput.getAlternateAlleles().size()], 0.0);
Assert.assertNotNull(observedAF);
assertEquals(observedAF, expectedAF, 0.01);
}
}
use of org.broadinstitute.hellbender.tools.exome.TargetCollection in project gatk-protected by broadinstitute.
the class EvaluateCopyNumberTriStateCallsIntegrationTest method checkOutputCallsWithoutOverlappingTruthConcordance.
private void checkOutputCallsWithoutOverlappingTruthConcordance(final File truthFile, final File callsFile, final File targetsFile, final File vcfOutput, final EvaluationFiltersArgumentCollection filteringOptions) {
final List<VariantContext> truthVariants = readVCFFile(truthFile);
final List<VariantContext> outputVariants = readVCFFile(vcfOutput);
final List<VariantContext> callsVariants = readVCFFile(callsFile);
final Set<String> outputSamples = outputVariants.get(0).getSampleNames();
final TargetCollection<Target> targets = TargetArgumentCollection.readTargetCollection(targetsFile);
for (final VariantContext call : callsVariants) {
final List<Target> overlappingTargets = targets.targets(call);
final List<VariantContext> overlappingOutput = outputVariants.stream().filter(vc -> new SimpleInterval(vc).overlaps(call)).collect(Collectors.toList());
final List<VariantContext> overlappingTruth = truthVariants.stream().filter(vc -> new SimpleInterval(vc).overlaps(call)).collect(Collectors.toList());
if (!overlappingTruth.isEmpty()) {
continue;
}
@SuppressWarnings("all") final Optional<VariantContext> matchingOutputOptional = overlappingOutput.stream().filter(vc -> new SimpleInterval(call).equals(new SimpleInterval(vc))).findAny();
final VariantContext matchingOutput = matchingOutputOptional.get();
final int[] sampleCallsCount = new int[CopyNumberTriStateAllele.ALL_ALLELES.size()];
for (final String sample : outputSamples) {
final Genotype outputGenotype = matchingOutput.getGenotype(sample);
final Genotype callGenotype = call.getGenotype(sample);
final Allele expectedCall = callGenotype.getAllele(0).isCalled() ? CopyNumberTriStateAllele.valueOf(callGenotype.getAllele(0)) : null;
final Allele actualCall = outputGenotype.getAllele(0).isCalled() ? CopyNumberTriStateAllele.valueOf(outputGenotype.getAllele(0)) : null;
Assert.assertEquals(expectedCall, actualCall);
final boolean expectedDiscovered = XHMMSegmentGenotyper.DISCOVERY_TRUE.equals(GATKProtectedVariantContextUtils.getAttributeAsString(callGenotype, XHMMSegmentGenotyper.DISCOVERY_KEY, "N"));
final boolean actualDiscovered = XHMMSegmentGenotyper.DISCOVERY_TRUE.equals(GATKProtectedVariantContextUtils.getAttributeAsString(callGenotype, XHMMSegmentGenotyper.DISCOVERY_KEY, "N"));
Assert.assertEquals(actualDiscovered, expectedDiscovered);
final int[] expectedCounts = new int[CopyNumberTriStateAllele.ALL_ALLELES.size()];
if (expectedCall.isCalled() && actualDiscovered) {
expectedCounts[CopyNumberTriStateAllele.valueOf(expectedCall).index()]++;
}
if (outputGenotype.hasExtendedAttribute(VariantEvaluationContext.CALLED_ALLELE_COUNTS_KEY)) {
Assert.assertEquals(GATKProtectedVariantContextUtils.getAttributeAsIntArray(outputGenotype, VariantEvaluationContext.CALLED_ALLELE_COUNTS_KEY, () -> new int[CopyNumberTriStateAllele.ALL_ALLELES.size()], 0), expectedCounts);
}
if (outputGenotype.hasExtendedAttribute(VariantEvaluationContext.CALLED_SEGMENTS_COUNT_KEY)) {
Assert.assertEquals(GATKProtectedVariantContextUtils.getAttributeAsInt(outputGenotype, VariantEvaluationContext.CALLED_SEGMENTS_COUNT_KEY, -1), expectedCall.isCalled() && actualDiscovered ? 1 : 0);
}
final String evalClass = GATKProtectedVariantContextUtils.getAttributeAsString(outputGenotype, VariantEvaluationContext.EVALUATION_CLASS_KEY, null);
Assert.assertEquals(evalClass, expectedCall.isCalled() && actualDiscovered && expectedCall.isNonReference() ? EvaluationClass.UNKNOWN_POSITIVE.acronym : null);
if (expectedCall.isCalled()) {
sampleCallsCount[CopyNumberTriStateAllele.valueOf(expectedCall).index()]++;
}
Assert.assertEquals(GATKProtectedVariantContextUtils.getAttributeAsDouble(outputGenotype, VariantEvaluationContext.CALL_QUALITY_KEY, 0.0), callGQ(callGenotype), 0.01);
}
final int expectedAN = (int) MathUtils.sum(sampleCallsCount);
final int observedAN = matchingOutput.getAttributeAsInt(VariantEvaluationContext.CALLS_ALLELE_NUMBER_KEY, -1);
Assert.assertEquals(observedAN, expectedAN);
final double[] expectedAF = Arrays.copyOfRange(IntStream.of(sampleCallsCount).mapToDouble(i -> expectedAN > 0 ? i / (double) expectedAN : 0.0).toArray(), 1, sampleCallsCount.length);
final double[] observedAF = GATKProtectedVariantContextUtils.getAttributeAsDoubleArray(matchingOutput, VariantEvaluationContext.CALLS_ALLELE_FREQUENCY_KEY, () -> new double[matchingOutput.getAlternateAlleles().size()], 0.0);
Assert.assertNotNull(observedAF);
assertEquals(observedAF, expectedAF, 0.01);
Assert.assertEquals(matchingOutput.getAttributeAsInt(VariantEvaluationContext.TRUTH_ALLELE_NUMBER_KEY, -1), 0);
}
}
use of org.broadinstitute.hellbender.tools.exome.TargetCollection in project gatk by broadinstitute.
the class EvaluateCopyNumberTriStateCallsIntegrationTest method checkOutputCallsWithOverlappingTruthConcordance.
private void checkOutputCallsWithOverlappingTruthConcordance(final File truthFile, final File callsFile, final File targetsFile, final File vcfOutput, final EvaluationFiltersArgumentCollection filteringOptions) {
final List<VariantContext> truthVariants = readVCFFile(truthFile);
final List<VariantContext> outputVariants = readVCFFile(vcfOutput);
final List<VariantContext> callsVariants = readVCFFile(callsFile);
final Set<String> outputSamples = outputVariants.get(0).getSampleNames();
final TargetCollection<Target> targets = TargetArgumentCollection.readTargetCollection(targetsFile);
for (final VariantContext truth : truthVariants) {
final List<Target> overlappingTargets = targets.targets(truth);
final List<VariantContext> overlappingOutput = outputVariants.stream().filter(vc -> new SimpleInterval(vc).overlaps(truth)).collect(Collectors.toList());
final List<VariantContext> overlappingCalls = callsVariants.stream().filter(vc -> new SimpleInterval(vc).overlaps(truth)).collect(Collectors.toList());
if (overlappingTargets.isEmpty()) {
Assert.assertTrue(overlappingOutput.isEmpty());
continue;
}
@SuppressWarnings("all") final VariantContext matchingOutput = overlappingOutput.stream().filter(vc -> new SimpleInterval(truth).equals(new SimpleInterval(vc))).findAny().get();
final int[] sampleCallsCount = new int[CopyNumberTriStateAllele.ALL_ALLELES.size()];
for (final String sample : outputSamples) {
final Genotype outputGenotype = matchingOutput.getGenotype(sample);
final List<Pair<VariantContext, Genotype>> sampleCalls = overlappingCalls.stream().map(vc -> new ImmutablePair<>(vc, vc.getGenotype(sample))).filter(p -> XHMMSegmentGenotyper.DISCOVERY_TRUE.equals(p.getRight().getExtendedAttribute(XHMMSegmentGenotyper.DISCOVERY_KEY))).filter(p -> callPassFilters(p.getLeft(), p.getRight(), targets, filteringOptions)).collect(Collectors.toList());
final int[] expectedCounts = new int[CopyNumberTriStateAllele.ALL_ALLELES.size()];
sampleCalls.forEach(p -> {
expectedCounts[CopyNumberTriStateAllele.valueOf(p.getRight().getAllele(0)).index()]++;
});
final int[] actualCounts = GATKProtectedVariantContextUtils.getAttributeAsIntArray(outputGenotype, VariantEvaluationContext.CALLED_ALLELE_COUNTS_KEY, () -> new int[CopyNumberTriStateAllele.ALL_ALLELES.size()], 0);
Assert.assertEquals(actualCounts, expectedCounts, Arrays.toString(actualCounts) + " " + Arrays.toString(expectedCounts));
final int expectedTotalCount = (int) MathUtils.sum(expectedCounts);
final int actualTotalCount = GATKProtectedVariantContextUtils.getAttributeAsInt(outputGenotype, VariantEvaluationContext.CALLED_SEGMENTS_COUNT_KEY, -1);
Assert.assertEquals(actualTotalCount, expectedTotalCount);
final int expectedTargetCount = sampleCalls.stream().mapToInt(p -> targets.targetCount(p.getLeft())).sum();
final int observedTargetCount = GATKProtectedVariantContextUtils.getAttributeAsInt(outputGenotype, VariantEvaluationContext.CALLED_TARGET_COUNT_KEY, -1);
Assert.assertEquals(observedTargetCount, expectedTargetCount);
final Allele truthCallAllele = outputTruthAllele(outputGenotype);
final boolean isMixed = IntStream.of(actualCounts).filter(i -> i > 0).count() > 1;
final String evalClass = GATKProtectedVariantContextUtils.getAttributeAsString(outputGenotype, VariantEvaluationContext.EVALUATION_CLASS_KEY, null);
if (sampleCalls.size() > 0 && !isMixed) {
final Pair<VariantContext, Genotype> bestCall = sampleCalls.stream().sorted((p1, p2) -> -Double.compare(callGQ(p1.getRight()), callGQ(p2.getRight()))).findFirst().get();
final CopyNumberTriStateAllele expectedCall = CopyNumberTriStateAllele.valueOf(bestCall.getRight().getAllele(0));
final CopyNumberTriStateAllele actualCall = CopyNumberTriStateAllele.valueOf(outputGenotype.getAllele(0));
Assert.assertEquals(actualCall, expectedCall);
sampleCallsCount[expectedCall.index()]++;
if (!truthCallAllele.isReference()) {
if (truthCallAllele.equals(actualCall)) {
Assert.assertEquals(evalClass, EvaluationClass.TRUE_POSITIVE.acronym);
} else if (!truthCallAllele.isNoCall()) {
Assert.assertEquals(evalClass, EvaluationClass.DISCORDANT_POSITIVE.acronym);
} else {
Assert.assertNull(evalClass);
}
} else if (truthCallAllele.isReference()) {
Assert.assertEquals(evalClass, EvaluationClass.FALSE_POSITIVE.acronym);
}
} else {
Assert.assertEquals(Allele.NO_CALL, outputGenotype.getAllele(0));
if (sampleCalls.isEmpty()) {
Assert.assertEquals(evalClass, !truthCallAllele.isReference() && truthCallAllele.isCalled() ? EvaluationClass.FALSE_NEGATIVE.acronym : null);
Assert.assertEquals(GATKProtectedVariantContextUtils.getAttributeAsDouble(outputGenotype, VariantEvaluationContext.CALL_QUALITY_KEY, -1), 0.0);
} else {
Assert.assertEquals(evalClass, !truthCallAllele.isReference() && truthCallAllele.isCalled() ? EvaluationClass.MIXED_POSITIVE.acronym : EvaluationClass.FALSE_POSITIVE.acronym);
final Pair<VariantContext, Genotype> bestCall = sampleCalls.stream().sorted((p1, p2) -> -Double.compare(callGQ(p1.getRight()), callGQ(p2.getRight()))).findFirst().get();
Assert.assertEquals(GATKProtectedVariantContextUtils.getAttributeAsDouble(outputGenotype, VariantEvaluationContext.CALL_QUALITY_KEY, -1), callGQ(bestCall.getRight()));
}
}
}
final int expectedAN = (int) MathUtils.sum(sampleCallsCount);
final int observedAN = matchingOutput.getAttributeAsInt(VariantEvaluationContext.CALLS_ALLELE_NUMBER_KEY, -1);
Assert.assertEquals(observedAN, expectedAN);
final double[] expectedAF = Arrays.copyOfRange(IntStream.of(sampleCallsCount).mapToDouble(i -> expectedAN > 0 ? i / (double) expectedAN : 0.0).toArray(), 1, sampleCallsCount.length);
final double[] observedAF = GATKProtectedVariantContextUtils.getAttributeAsDoubleArray(matchingOutput, VariantEvaluationContext.CALLS_ALLELE_FREQUENCY_KEY, () -> new double[matchingOutput.getAlternateAlleles().size()], 0.0);
Assert.assertNotNull(observedAF);
assertEquals(observedAF, expectedAF, 0.01);
}
}
use of org.broadinstitute.hellbender.tools.exome.TargetCollection in project gatk by broadinstitute.
the class EvaluateCopyNumberTriStateCallsIntegrationTest method checkOutputCallsWithoutOverlappingTruthConcordance.
private void checkOutputCallsWithoutOverlappingTruthConcordance(final File truthFile, final File callsFile, final File targetsFile, final File vcfOutput, final EvaluationFiltersArgumentCollection filteringOptions) {
final List<VariantContext> truthVariants = readVCFFile(truthFile);
final List<VariantContext> outputVariants = readVCFFile(vcfOutput);
final List<VariantContext> callsVariants = readVCFFile(callsFile);
final Set<String> outputSamples = outputVariants.get(0).getSampleNames();
final TargetCollection<Target> targets = TargetArgumentCollection.readTargetCollection(targetsFile);
for (final VariantContext call : callsVariants) {
final List<Target> overlappingTargets = targets.targets(call);
final List<VariantContext> overlappingOutput = outputVariants.stream().filter(vc -> new SimpleInterval(vc).overlaps(call)).collect(Collectors.toList());
final List<VariantContext> overlappingTruth = truthVariants.stream().filter(vc -> new SimpleInterval(vc).overlaps(call)).collect(Collectors.toList());
if (!overlappingTruth.isEmpty()) {
continue;
}
@SuppressWarnings("all") final Optional<VariantContext> matchingOutputOptional = overlappingOutput.stream().filter(vc -> new SimpleInterval(call).equals(new SimpleInterval(vc))).findAny();
final VariantContext matchingOutput = matchingOutputOptional.get();
final int[] sampleCallsCount = new int[CopyNumberTriStateAllele.ALL_ALLELES.size()];
for (final String sample : outputSamples) {
final Genotype outputGenotype = matchingOutput.getGenotype(sample);
final Genotype callGenotype = call.getGenotype(sample);
final Allele expectedCall = callGenotype.getAllele(0).isCalled() ? CopyNumberTriStateAllele.valueOf(callGenotype.getAllele(0)) : null;
final Allele actualCall = outputGenotype.getAllele(0).isCalled() ? CopyNumberTriStateAllele.valueOf(outputGenotype.getAllele(0)) : null;
Assert.assertEquals(expectedCall, actualCall);
final boolean expectedDiscovered = XHMMSegmentGenotyper.DISCOVERY_TRUE.equals(GATKProtectedVariantContextUtils.getAttributeAsString(callGenotype, XHMMSegmentGenotyper.DISCOVERY_KEY, "N"));
final boolean actualDiscovered = XHMMSegmentGenotyper.DISCOVERY_TRUE.equals(GATKProtectedVariantContextUtils.getAttributeAsString(callGenotype, XHMMSegmentGenotyper.DISCOVERY_KEY, "N"));
Assert.assertEquals(actualDiscovered, expectedDiscovered);
final int[] expectedCounts = new int[CopyNumberTriStateAllele.ALL_ALLELES.size()];
if (expectedCall.isCalled() && actualDiscovered) {
expectedCounts[CopyNumberTriStateAllele.valueOf(expectedCall).index()]++;
}
if (outputGenotype.hasExtendedAttribute(VariantEvaluationContext.CALLED_ALLELE_COUNTS_KEY)) {
Assert.assertEquals(GATKProtectedVariantContextUtils.getAttributeAsIntArray(outputGenotype, VariantEvaluationContext.CALLED_ALLELE_COUNTS_KEY, () -> new int[CopyNumberTriStateAllele.ALL_ALLELES.size()], 0), expectedCounts);
}
if (outputGenotype.hasExtendedAttribute(VariantEvaluationContext.CALLED_SEGMENTS_COUNT_KEY)) {
Assert.assertEquals(GATKProtectedVariantContextUtils.getAttributeAsInt(outputGenotype, VariantEvaluationContext.CALLED_SEGMENTS_COUNT_KEY, -1), expectedCall.isCalled() && actualDiscovered ? 1 : 0);
}
final String evalClass = GATKProtectedVariantContextUtils.getAttributeAsString(outputGenotype, VariantEvaluationContext.EVALUATION_CLASS_KEY, null);
Assert.assertEquals(evalClass, expectedCall.isCalled() && actualDiscovered && expectedCall.isNonReference() ? EvaluationClass.UNKNOWN_POSITIVE.acronym : null);
if (expectedCall.isCalled()) {
sampleCallsCount[CopyNumberTriStateAllele.valueOf(expectedCall).index()]++;
}
Assert.assertEquals(GATKProtectedVariantContextUtils.getAttributeAsDouble(outputGenotype, VariantEvaluationContext.CALL_QUALITY_KEY, 0.0), callGQ(callGenotype), 0.01);
}
final int expectedAN = (int) MathUtils.sum(sampleCallsCount);
final int observedAN = matchingOutput.getAttributeAsInt(VariantEvaluationContext.CALLS_ALLELE_NUMBER_KEY, -1);
Assert.assertEquals(observedAN, expectedAN);
final double[] expectedAF = Arrays.copyOfRange(IntStream.of(sampleCallsCount).mapToDouble(i -> expectedAN > 0 ? i / (double) expectedAN : 0.0).toArray(), 1, sampleCallsCount.length);
final double[] observedAF = GATKProtectedVariantContextUtils.getAttributeAsDoubleArray(matchingOutput, VariantEvaluationContext.CALLS_ALLELE_FREQUENCY_KEY, () -> new double[matchingOutput.getAlternateAlleles().size()], 0.0);
Assert.assertNotNull(observedAF);
assertEquals(observedAF, expectedAF, 0.01);
Assert.assertEquals(matchingOutput.getAttributeAsInt(VariantEvaluationContext.TRUTH_ALLELE_NUMBER_KEY, -1), 0);
}
}
use of org.broadinstitute.hellbender.tools.exome.TargetCollection in project gatk-protected by broadinstitute.
the class CalculateContamination method findConfidentHomAltSites.
private static List<PileupSummary> findConfidentHomAltSites(List<PileupSummary> sites) {
if (sites.isEmpty()) {
return new ArrayList<>();
}
final TargetCollection<PileupSummary> tc = new HashedListTargetCollection<>(sites);
final double averageCoverage = sites.stream().mapToInt(PileupSummary::getTotalCount).average().getAsDouble();
final List<Double> smoothedCopyRatios = new ArrayList<>();
final List<Double> hetRatios = new ArrayList<>();
for (final PileupSummary site : sites) {
final SimpleInterval nearbySpan = new SimpleInterval(site.getContig(), Math.max(1, site.getStart() - CNV_SCALE), site.getEnd() + CNV_SCALE);
final List<PileupSummary> nearbySites = tc.targets(nearbySpan);
final double averageNearbyCopyRatio = nearbySites.stream().mapToDouble(s -> s.getTotalCount() / averageCoverage).average().orElseGet(() -> 0);
smoothedCopyRatios.add(averageNearbyCopyRatio);
final double expectedNumberOfNearbyHets = nearbySites.stream().mapToDouble(PileupSummary::getAlleleFrequency).map(x -> 2 * x * (1 - x)).sum();
final long numberOfNearbyHets = nearbySites.stream().mapToDouble(PileupSummary::getAltFraction).filter(x -> 0.4 < x && x < 0.6).count();
final double hetRatio = numberOfNearbyHets / expectedNumberOfNearbyHets;
hetRatios.add(hetRatio);
}
final double medianSmoothedCopyRatio = new Median().evaluate(smoothedCopyRatios.stream().mapToDouble(x -> x).toArray());
final List<Integer> indicesWithAnomalousCopyRatio = IntStream.range(0, sites.size()).filter(n -> smoothedCopyRatios.get(n) < 0.8 * medianSmoothedCopyRatio || smoothedCopyRatios.get(n) > 2 * medianSmoothedCopyRatio).boxed().collect(Collectors.toList());
final double meanHetRatio = hetRatios.stream().mapToDouble(x -> x).average().getAsDouble();
final List<Integer> indicesWithLossOfHeterozygosity = IntStream.range(0, sites.size()).filter(n -> hetRatios.get(n) < meanHetRatio * 0.5).boxed().collect(Collectors.toList());
//TODO: as extra security, filter out sites that are near too many hom alts
logger.info(String.format("Excluding %d sites with low or high copy ratio and %d sites with potential loss of heterozygosity", indicesWithAnomalousCopyRatio.size(), indicesWithLossOfHeterozygosity.size()));
logger.info(String.format("The average ratio of hets within distance %d to theoretically expected number of hets is %.3f", CNV_SCALE, meanHetRatio));
final Set<Integer> badSites = new TreeSet<>();
badSites.addAll(indicesWithAnomalousCopyRatio);
badSites.addAll(indicesWithLossOfHeterozygosity);
return IntStream.range(0, sites.size()).filter(n -> !badSites.contains(n)).mapToObj(sites::get).filter(s -> s.getAltFraction() > 0.8).collect(Collectors.toList());
}
Aggregations