use of org.codehaus.groovy.ast.FieldNode in project groovy by apache.
the class StaticTypeCheckingVisitor method visitMethodCallExpression.
@Override
public void visitMethodCallExpression(MethodCallExpression call) {
final String name = call.getMethodAsString();
if (name == null) {
addStaticTypeError("cannot resolve dynamic method name at compile time.", call.getMethod());
return;
}
if (extension.beforeMethodCall(call)) {
extension.afterMethodCall(call);
return;
}
typeCheckingContext.pushEnclosingMethodCall(call);
final Expression objectExpression = call.getObjectExpression();
objectExpression.visit(this);
call.getMethod().visit(this);
// the call is made on a collection type
if (call.isSpreadSafe()) {
//TODO check if this should not be change to iterator based call logic
ClassNode expressionType = getType(objectExpression);
if (!implementsInterfaceOrIsSubclassOf(expressionType, Collection_TYPE) && !expressionType.isArray()) {
addStaticTypeError("Spread operator can only be used on collection types", objectExpression);
return;
} else {
// type check call as if it was made on component type
ClassNode componentType = inferComponentType(expressionType, int_TYPE);
MethodCallExpression subcall = callX(castX(componentType, EmptyExpression.INSTANCE), name, call.getArguments());
subcall.setLineNumber(call.getLineNumber());
subcall.setColumnNumber(call.getColumnNumber());
subcall.setImplicitThis(call.isImplicitThis());
visitMethodCallExpression(subcall);
// the inferred type here should be a list of what the subcall returns
ClassNode subcallReturnType = getType(subcall);
ClassNode listNode = LIST_TYPE.getPlainNodeReference();
listNode.setGenericsTypes(new GenericsType[] { new GenericsType(wrapTypeIfNecessary(subcallReturnType)) });
storeType(call, listNode);
// store target method
storeTargetMethod(call, (MethodNode) subcall.getNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET));
typeCheckingContext.popEnclosingMethodCall();
return;
}
}
Expression callArguments = call.getArguments();
ArgumentListExpression argumentList = InvocationWriter.makeArgumentList(callArguments);
checkForbiddenSpreadArgument(argumentList);
// for arguments, we need to visit closures *after* the method has been chosen
final ClassNode receiver = getType(objectExpression);
visitMethodCallArguments(receiver, argumentList, false, null);
ClassNode[] args = getArgumentTypes(argumentList);
final boolean isCallOnClosure = isClosureCall(name, objectExpression, callArguments);
try {
boolean callArgsVisited = false;
if (isCallOnClosure) {
// this is a closure.call() call
if (objectExpression == VariableExpression.THIS_EXPRESSION) {
// isClosureCall() check verified earlier that a field exists
FieldNode field = typeCheckingContext.getEnclosingClassNode().getDeclaredField(name);
GenericsType[] genericsTypes = field.getType().getGenericsTypes();
if (genericsTypes != null) {
ClassNode closureReturnType = genericsTypes[0].getType();
Object data = field.getNodeMetaData(StaticTypesMarker.CLOSURE_ARGUMENTS);
if (data != null) {
Parameter[] parameters = (Parameter[]) data;
typeCheckClosureCall(callArguments, args, parameters);
}
storeType(call, closureReturnType);
}
} else if (objectExpression instanceof VariableExpression) {
Variable variable = findTargetVariable((VariableExpression) objectExpression);
if (variable instanceof ASTNode) {
Object data = ((ASTNode) variable).getNodeMetaData(StaticTypesMarker.CLOSURE_ARGUMENTS);
if (data != null) {
Parameter[] parameters = (Parameter[]) data;
typeCheckClosureCall(callArguments, args, parameters);
}
ClassNode type = getType(((ASTNode) variable));
if (type != null && type.equals(CLOSURE_TYPE)) {
GenericsType[] genericsTypes = type.getGenericsTypes();
type = OBJECT_TYPE;
if (genericsTypes != null) {
if (!genericsTypes[0].isPlaceholder()) {
type = genericsTypes[0].getType();
}
}
}
if (type != null) {
storeType(call, type);
}
}
} else if (objectExpression instanceof ClosureExpression) {
// we can get actual parameters directly
Parameter[] parameters = ((ClosureExpression) objectExpression).getParameters();
typeCheckClosureCall(callArguments, args, parameters);
ClassNode data = getInferredReturnType(objectExpression);
if (data != null) {
storeType(call, data);
}
}
int nbOfArgs;
if (callArguments instanceof ArgumentListExpression) {
ArgumentListExpression list = (ArgumentListExpression) callArguments;
nbOfArgs = list.getExpressions().size();
} else {
// todo : other cases
nbOfArgs = 0;
}
storeTargetMethod(call, nbOfArgs == 0 ? CLOSURE_CALL_NO_ARG : nbOfArgs == 1 ? CLOSURE_CALL_ONE_ARG : CLOSURE_CALL_VARGS);
} else {
// method call receivers are :
// - possible "with" receivers
// - the actual receiver as found in the method call expression
// - any of the potential receivers found in the instanceof temporary table
// in that order
List<Receiver<String>> receivers = new LinkedList<Receiver<String>>();
List<Receiver<String>> owners = makeOwnerList(objectExpression);
addReceivers(receivers, owners, call.isImplicitThis());
List<MethodNode> mn = null;
Receiver<String> chosenReceiver = null;
for (Receiver<String> currentReceiver : receivers) {
ClassNode receiverType = currentReceiver.getType();
mn = findMethod(receiverType, name, args);
// ensure that all methods are either static or declared by the current receiver or a superclass
if (!mn.isEmpty() && (typeCheckingContext.isInStaticContext || (receiverType.getModifiers() & Opcodes.ACC_STATIC) != 0) && (call.isImplicitThis() || (objectExpression instanceof VariableExpression && ((VariableExpression) objectExpression).isThisExpression()))) {
// we create separate method lists just to be able to print out
// a nice error message to the user
// a method is accessible if it is static, or if we are not in a static context and it is
// declared by the current receiver or a superclass
List<MethodNode> accessibleMethods = new LinkedList<MethodNode>();
List<MethodNode> inaccessibleMethods = new LinkedList<MethodNode>();
for (final MethodNode node : mn) {
if (node.isStatic() || (!typeCheckingContext.isInStaticContext && implementsInterfaceOrIsSubclassOf(receiverType, node.getDeclaringClass()))) {
accessibleMethods.add(node);
} else {
inaccessibleMethods.add(node);
}
}
mn = accessibleMethods;
if (accessibleMethods.isEmpty()) {
// choose an arbitrary method to display an error message
MethodNode node = inaccessibleMethods.get(0);
ClassNode owner = node.getDeclaringClass();
addStaticTypeError("Non static method " + owner.getName() + "#" + node.getName() + " cannot be called from static context", call);
}
}
if (!mn.isEmpty()) {
chosenReceiver = currentReceiver;
break;
}
}
if (mn.isEmpty() && typeCheckingContext.getEnclosingClosure() != null && args.length == 0) {
// add special handling of getDelegate() and getOwner()
if ("getDelegate".equals(name)) {
mn = Collections.singletonList(GET_DELEGATE);
} else if ("getOwner".equals(name)) {
mn = Collections.singletonList(GET_OWNER);
} else if ("getThisObject".equals(name)) {
mn = Collections.singletonList(GET_THISOBJECT);
}
}
if (mn.isEmpty()) {
mn = extension.handleMissingMethod(receiver, name, argumentList, args, call);
}
if (mn.isEmpty()) {
addNoMatchingMethodError(receiver, name, args, call);
} else {
if (areCategoryMethodCalls(mn, name, args)) {
addCategoryMethodCallError(call);
}
mn = disambiguateMethods(mn, chosenReceiver != null ? chosenReceiver.getType() : null, args, call);
if (mn.size() == 1) {
MethodNode directMethodCallCandidate = mn.get(0);
if (call.getNodeMetaData(StaticTypesMarker.DYNAMIC_RESOLUTION) == null && !directMethodCallCandidate.isStatic() && objectExpression instanceof ClassExpression && !"java.lang.Class".equals(directMethodCallCandidate.getDeclaringClass().getName())) {
ClassNode owner = directMethodCallCandidate.getDeclaringClass();
addStaticTypeError("Non static method " + owner.getName() + "#" + directMethodCallCandidate.getName() + " cannot be called from static context", call);
}
if (chosenReceiver == null) {
chosenReceiver = Receiver.make(directMethodCallCandidate.getDeclaringClass());
}
ClassNode returnType = getType(directMethodCallCandidate);
if (isUsingGenericsOrIsArrayUsingGenerics(returnType)) {
visitMethodCallArguments(chosenReceiver.getType(), argumentList, true, directMethodCallCandidate);
ClassNode irtg = inferReturnTypeGenerics(chosenReceiver.getType(), directMethodCallCandidate, callArguments, call.getGenericsTypes());
returnType = irtg != null && implementsInterfaceOrIsSubclassOf(irtg, returnType) ? irtg : returnType;
callArgsVisited = true;
}
if (directMethodCallCandidate == GET_DELEGATE && typeCheckingContext.getEnclosingClosure() != null) {
DelegationMetadata md = getDelegationMetadata(typeCheckingContext.getEnclosingClosure().getClosureExpression());
returnType = typeCheckingContext.getEnclosingClassNode();
if (md != null) {
returnType = md.getType();
}
}
if (typeCheckMethodsWithGenericsOrFail(chosenReceiver.getType(), args, mn.get(0), call)) {
returnType = adjustWithTraits(directMethodCallCandidate, chosenReceiver.getType(), args, returnType);
storeType(call, returnType);
storeTargetMethod(call, directMethodCallCandidate);
String data = chosenReceiver.getData();
if (data != null) {
// the method which has been chosen is supposed to be a call on delegate or owner
// so we store the information so that the static compiler may reuse it
call.putNodeMetaData(StaticTypesMarker.IMPLICIT_RECEIVER, data);
}
// if the object expression is a closure shared variable, we will have to perform a second pass
if (objectExpression instanceof VariableExpression) {
VariableExpression var = (VariableExpression) objectExpression;
if (var.isClosureSharedVariable()) {
SecondPassExpression<ClassNode[]> wrapper = new SecondPassExpression<ClassNode[]>(call, args);
typeCheckingContext.secondPassExpressions.add(wrapper);
}
}
}
} else {
addAmbiguousErrorMessage(mn, name, args, call);
}
}
}
// now that a method has been chosen, we are allowed to visit the closures
if (!callArgsVisited) {
MethodNode mn = (MethodNode) call.getNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET);
visitMethodCallArguments(receiver, argumentList, true, mn);
// GROOVY-6219
if (mn != null) {
List<Expression> argExpressions = argumentList.getExpressions();
Parameter[] parameters = mn.getParameters();
for (int i = 0; i < argExpressions.size() && i < parameters.length; i++) {
Expression arg = argExpressions.get(i);
ClassNode pType = parameters[i].getType();
ClassNode aType = getType(arg);
if (CLOSURE_TYPE.equals(pType) && CLOSURE_TYPE.equals(aType)) {
if (!isAssignableTo(aType, pType)) {
addNoMatchingMethodError(receiver, name, getArgumentTypes(argumentList), call);
call.removeNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET);
}
}
}
}
}
} finally {
typeCheckingContext.popEnclosingMethodCall();
extension.afterMethodCall(call);
}
}
use of org.codehaus.groovy.ast.FieldNode in project groovy by apache.
the class TraitASTTransformation method createHelperClass.
private ClassNode createHelperClass(final ClassNode cNode) {
ClassNode helper = new InnerClassNode(cNode, Traits.helperClassName(cNode), ACC_PUBLIC | ACC_STATIC | ACC_ABSTRACT | ACC_SYNTHETIC, ClassHelper.OBJECT_TYPE, ClassNode.EMPTY_ARRAY, null);
cNode.setModifiers(ACC_PUBLIC | ACC_INTERFACE | ACC_ABSTRACT);
checkInnerClasses(cNode);
MethodNode initializer = createInitMethod(false, cNode, helper);
MethodNode staticInitializer = createInitMethod(true, cNode, helper);
// apply the verifier to have the property nodes generated
generatePropertyMethods(cNode);
// prepare fields
List<FieldNode> fields = new ArrayList<FieldNode>();
Set<String> fieldNames = new HashSet<String>();
for (FieldNode field : cNode.getFields()) {
if (!"metaClass".equals(field.getName()) && (!field.isSynthetic() || field.getName().indexOf('$') < 0)) {
fields.add(field);
fieldNames.add(field.getName());
}
}
ClassNode fieldHelper = null;
if (!fields.isEmpty()) {
fieldHelper = new InnerClassNode(cNode, Traits.fieldHelperClassName(cNode), ACC_STATIC | ACC_PUBLIC | ACC_INTERFACE | ACC_ABSTRACT, ClassHelper.OBJECT_TYPE);
}
// add methods
List<MethodNode> methods = new ArrayList<MethodNode>(cNode.getMethods());
List<MethodNode> nonPublicAPIMethods = new LinkedList<MethodNode>();
for (final MethodNode methodNode : methods) {
boolean declared = methodNode.getDeclaringClass() == cNode;
if (declared) {
if (!methodNode.isSynthetic() && (methodNode.isProtected() || methodNode.getModifiers() == 0)) {
unit.addError(new SyntaxException("Cannot have protected/package private method in a trait (" + cNode.getName() + "#" + methodNode.getTypeDescriptor() + ")", methodNode.getLineNumber(), methodNode.getColumnNumber()));
return null;
}
helper.addMethod(processMethod(cNode, helper, methodNode, fieldHelper, fieldNames));
if (methodNode.isPrivate() || methodNode.isStatic()) {
nonPublicAPIMethods.add(methodNode);
}
}
}
// remove methods which should not appear in the trait interface
for (MethodNode privateMethod : nonPublicAPIMethods) {
cNode.removeMethod(privateMethod);
}
// add fields
for (FieldNode field : fields) {
processField(field, initializer, staticInitializer, fieldHelper, helper, cNode, fieldNames);
}
// clear properties to avoid generation of methods
cNode.getProperties().clear();
// copy annotations
copyClassAnnotations(cNode, helper);
// reuse the full list of fields
fields = new ArrayList<FieldNode>(cNode.getFields());
for (FieldNode field : fields) {
cNode.removeField(field.getName());
}
// visit AST xforms
registerASTTranformations(helper);
unit.getAST().addClass(helper);
if (fieldHelper != null) {
unit.getAST().addClass(fieldHelper);
}
// resolve scope (for closures)
resolveScope(helper);
if (fieldHelper != null) {
resolveScope(fieldHelper);
}
return helper;
}
use of org.codehaus.groovy.ast.FieldNode in project groovy by apache.
the class StaticTypeCheckingVisitor method getType.
protected ClassNode getType(ASTNode exp) {
ClassNode cn = exp.getNodeMetaData(StaticTypesMarker.INFERRED_TYPE);
if (cn != null)
return cn;
if (exp instanceof ClassExpression) {
ClassNode node = CLASS_Type.getPlainNodeReference();
node.setGenericsTypes(new GenericsType[] { new GenericsType(((ClassExpression) exp).getType()) });
return node;
} else if (exp instanceof VariableExpression) {
VariableExpression vexp = (VariableExpression) exp;
ClassNode selfTrait = isTraitSelf(vexp);
if (selfTrait != null)
return makeSelf(selfTrait);
if (vexp == VariableExpression.THIS_EXPRESSION)
return makeThis();
if (vexp == VariableExpression.SUPER_EXPRESSION)
return makeSuper();
final Variable variable = vexp.getAccessedVariable();
if (variable instanceof FieldNode) {
checkOrMarkPrivateAccess(vexp, (FieldNode) variable, isLHSOfEnclosingAssignment(vexp));
return getType((FieldNode) variable);
}
if (variable != null && variable != vexp && variable instanceof VariableExpression) {
return getType((Expression) variable);
}
if (variable instanceof Parameter) {
Parameter parameter = (Parameter) variable;
ClassNode type = typeCheckingContext.controlStructureVariables.get(parameter);
TypeCheckingContext.EnclosingClosure enclosingClosure = typeCheckingContext.getEnclosingClosure();
ClassNode[] closureParamTypes = (ClassNode[]) (enclosingClosure != null ? enclosingClosure.getClosureExpression().getNodeMetaData(StaticTypesMarker.CLOSURE_ARGUMENTS) : null);
if (type == null && enclosingClosure != null && "it".equals(variable.getName()) && closureParamTypes != null) {
final Parameter[] parameters = enclosingClosure.getClosureExpression().getParameters();
if (parameters.length == 0 && getTemporaryTypesForExpression(vexp) == null) {
type = closureParamTypes[0];
}
}
if (type != null) {
storeType((VariableExpression) exp, type);
return type;
}
}
}
if (exp instanceof ListExpression) {
return inferListExpressionType((ListExpression) exp);
} else if (exp instanceof MapExpression) {
return inferMapExpressionType((MapExpression) exp);
}
if (exp instanceof ConstructorCallExpression) {
return ((ConstructorCallExpression) exp).getType();
}
if (exp instanceof MethodNode) {
if ((exp == GET_DELEGATE || exp == GET_OWNER || exp == GET_THISOBJECT) && typeCheckingContext.getEnclosingClosure() != null) {
return typeCheckingContext.getEnclosingClassNode();
}
ClassNode ret = getInferredReturnType(exp);
return ret != null ? ret : ((MethodNode) exp).getReturnType();
}
if (exp instanceof ClosureExpression) {
ClassNode irt = getInferredReturnType(exp);
if (irt != null) {
irt = wrapTypeIfNecessary(irt);
ClassNode result = CLOSURE_TYPE.getPlainNodeReference();
result.setGenericsTypes(new GenericsType[] { new GenericsType(irt) });
return result;
}
}
if (exp instanceof RangeExpression) {
ClassNode plain = ClassHelper.RANGE_TYPE.getPlainNodeReference();
RangeExpression re = (RangeExpression) exp;
ClassNode fromType = getType(re.getFrom());
ClassNode toType = getType(re.getTo());
if (fromType.equals(toType)) {
plain.setGenericsTypes(new GenericsType[] { new GenericsType(wrapTypeIfNecessary(fromType)) });
} else {
plain.setGenericsTypes(new GenericsType[] { new GenericsType(wrapTypeIfNecessary(lowestUpperBound(fromType, toType))) });
}
return plain;
}
if (exp instanceof UnaryPlusExpression) {
return getType(((UnaryPlusExpression) exp).getExpression());
}
if (exp instanceof UnaryMinusExpression) {
return getType(((UnaryMinusExpression) exp).getExpression());
}
if (exp instanceof BitwiseNegationExpression) {
return getType(((BitwiseNegationExpression) exp).getExpression());
}
if (exp instanceof MethodCall) {
MethodNode target = (MethodNode) exp.getNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET);
if (target != null) {
return getType(target);
}
}
if (exp instanceof Parameter) {
return ((Parameter) exp).getOriginType();
}
if (exp instanceof FieldNode) {
FieldNode fn = (FieldNode) exp;
return getGenericsResolvedTypeOfFieldOrProperty(fn, fn.getOriginType());
}
if (exp instanceof PropertyNode) {
PropertyNode pn = (PropertyNode) exp;
return getGenericsResolvedTypeOfFieldOrProperty(pn, pn.getOriginType());
}
return exp instanceof VariableExpression ? ((VariableExpression) exp).getOriginType() : ((Expression) exp).getType();
}
use of org.codehaus.groovy.ast.FieldNode in project groovy by apache.
the class InnerClassVisitor method visitProperty.
@Override
public void visitProperty(PropertyNode node) {
final FieldNode field = node.getField();
final Expression init = field.getInitialExpression();
field.setInitialValueExpression(null);
super.visitProperty(node);
field.setInitialValueExpression(init);
}
use of org.codehaus.groovy.ast.FieldNode in project groovy by apache.
the class InnerClassVisitor method visitConstructorCallExpression.
@Override
public void visitConstructorCallExpression(ConstructorCallExpression call) {
super.visitConstructorCallExpression(call);
if (!call.isUsingAnonymousInnerClass()) {
passThisReference(call);
return;
}
InnerClassNode innerClass = (InnerClassNode) call.getType();
ClassNode outerClass = innerClass.getOuterClass();
ClassNode superClass = innerClass.getSuperClass();
if (superClass instanceof InnerClassNode && !superClass.isInterface() && !(superClass.isStaticClass() || ((superClass.getModifiers() & ACC_STATIC) == ACC_STATIC))) {
insertThis0ToSuperCall(call, innerClass);
}
if (!innerClass.getDeclaredConstructors().isEmpty())
return;
if ((innerClass.getModifiers() & ACC_STATIC) != 0)
return;
VariableScope scope = innerClass.getVariableScope();
if (scope == null)
return;
// expressions = constructor call arguments
List<Expression> expressions = ((TupleExpression) call.getArguments()).getExpressions();
// block = init code for the constructor we produce
BlockStatement block = new BlockStatement();
// parameters = parameters of the constructor
final int additionalParamCount = 1 + scope.getReferencedLocalVariablesCount();
List<Parameter> parameters = new ArrayList<Parameter>(expressions.size() + additionalParamCount);
// superCallArguments = arguments for the super call == the constructor call arguments
List<Expression> superCallArguments = new ArrayList<Expression>(expressions.size());
// first we add a super() call for all expressions given in the
// constructor call expression
int pCount = additionalParamCount;
for (Expression expr : expressions) {
pCount++;
// add one parameter for each expression in the
// constructor call
Parameter param = new Parameter(ClassHelper.OBJECT_TYPE, "p" + pCount);
parameters.add(param);
// add to super call
superCallArguments.add(new VariableExpression(param));
}
// add the super call
ConstructorCallExpression cce = new ConstructorCallExpression(ClassNode.SUPER, new TupleExpression(superCallArguments));
block.addStatement(new ExpressionStatement(cce));
// we need to add "this" to access unknown methods/properties
// this is saved in a field named this$0
pCount = 0;
expressions.add(pCount, VariableExpression.THIS_EXPRESSION);
boolean isStatic = isStaticThis(innerClass, scope);
ClassNode outerClassType = getClassNode(outerClass, isStatic);
if (!isStatic && inClosure)
outerClassType = ClassHelper.CLOSURE_TYPE;
outerClassType = outerClassType.getPlainNodeReference();
Parameter thisParameter = new Parameter(outerClassType, "p" + pCount);
parameters.add(pCount, thisParameter);
thisField = innerClass.addField("this$0", PUBLIC_SYNTHETIC, outerClassType, null);
addFieldInit(thisParameter, thisField, block);
// for each shared variable we add a reference and save it as field
for (Iterator it = scope.getReferencedLocalVariablesIterator(); it.hasNext(); ) {
pCount++;
org.codehaus.groovy.ast.Variable var = (org.codehaus.groovy.ast.Variable) it.next();
VariableExpression ve = new VariableExpression(var);
ve.setClosureSharedVariable(true);
ve.setUseReferenceDirectly(true);
expressions.add(pCount, ve);
ClassNode rawReferenceType = ClassHelper.REFERENCE_TYPE.getPlainNodeReference();
Parameter p = new Parameter(rawReferenceType, "p" + pCount);
parameters.add(pCount, p);
p.setOriginType(var.getOriginType());
final VariableExpression initial = new VariableExpression(p);
initial.setSynthetic(true);
initial.setUseReferenceDirectly(true);
final FieldNode pField = innerClass.addFieldFirst(ve.getName(), PUBLIC_SYNTHETIC, rawReferenceType, initial);
pField.setHolder(true);
pField.setOriginType(ClassHelper.getWrapper(var.getOriginType()));
}
innerClass.addConstructor(ACC_SYNTHETIC, parameters.toArray(new Parameter[parameters.size()]), ClassNode.EMPTY_ARRAY, block);
}
Aggregations