use of org.codehaus.groovy.ast.MethodNode in project gradle by gradle.
the class AstUtils method visitScriptCode.
public static void visitScriptCode(SourceUnit source, GroovyCodeVisitor transformer) {
source.getAST().getStatementBlock().visit(transformer);
for (Object method : source.getAST().getMethods()) {
MethodNode methodNode = (MethodNode) method;
methodNode.getCode().visit(transformer);
}
}
use of org.codehaus.groovy.ast.MethodNode in project spring-boot by spring-projects.
the class ResolveDependencyCoordinatesTransformationTests method transformationOfAnnotationOnMethod.
@Test
public void transformationOfAnnotationOnMethod() {
ClassNode classNode = new ClassNode("Test", 0, new ClassNode(Object.class));
this.moduleNode.addClass(classNode);
MethodNode methodNode = new MethodNode("test", 0, new ClassNode(Void.class), new Parameter[0], new ClassNode[0], null);
methodNode.addAnnotation(this.grabAnnotation);
classNode.addMethod(methodNode);
assertGrabAnnotationHasBeenTransformed();
}
use of org.codehaus.groovy.ast.MethodNode in project groovy by apache.
the class StaticTypeCheckingVisitor method visitMethodCallExpression.
@Override
public void visitMethodCallExpression(MethodCallExpression call) {
final String name = call.getMethodAsString();
if (name == null) {
addStaticTypeError("cannot resolve dynamic method name at compile time.", call.getMethod());
return;
}
if (extension.beforeMethodCall(call)) {
extension.afterMethodCall(call);
return;
}
typeCheckingContext.pushEnclosingMethodCall(call);
final Expression objectExpression = call.getObjectExpression();
objectExpression.visit(this);
call.getMethod().visit(this);
// the call is made on a collection type
if (call.isSpreadSafe()) {
//TODO check if this should not be change to iterator based call logic
ClassNode expressionType = getType(objectExpression);
if (!implementsInterfaceOrIsSubclassOf(expressionType, Collection_TYPE) && !expressionType.isArray()) {
addStaticTypeError("Spread operator can only be used on collection types", objectExpression);
return;
} else {
// type check call as if it was made on component type
ClassNode componentType = inferComponentType(expressionType, int_TYPE);
MethodCallExpression subcall = callX(castX(componentType, EmptyExpression.INSTANCE), name, call.getArguments());
subcall.setLineNumber(call.getLineNumber());
subcall.setColumnNumber(call.getColumnNumber());
subcall.setImplicitThis(call.isImplicitThis());
visitMethodCallExpression(subcall);
// the inferred type here should be a list of what the subcall returns
ClassNode subcallReturnType = getType(subcall);
ClassNode listNode = LIST_TYPE.getPlainNodeReference();
listNode.setGenericsTypes(new GenericsType[] { new GenericsType(wrapTypeIfNecessary(subcallReturnType)) });
storeType(call, listNode);
// store target method
storeTargetMethod(call, (MethodNode) subcall.getNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET));
typeCheckingContext.popEnclosingMethodCall();
return;
}
}
Expression callArguments = call.getArguments();
ArgumentListExpression argumentList = InvocationWriter.makeArgumentList(callArguments);
checkForbiddenSpreadArgument(argumentList);
// for arguments, we need to visit closures *after* the method has been chosen
final ClassNode receiver = getType(objectExpression);
visitMethodCallArguments(receiver, argumentList, false, null);
ClassNode[] args = getArgumentTypes(argumentList);
final boolean isCallOnClosure = isClosureCall(name, objectExpression, callArguments);
try {
boolean callArgsVisited = false;
if (isCallOnClosure) {
// this is a closure.call() call
if (objectExpression == VariableExpression.THIS_EXPRESSION) {
// isClosureCall() check verified earlier that a field exists
FieldNode field = typeCheckingContext.getEnclosingClassNode().getDeclaredField(name);
GenericsType[] genericsTypes = field.getType().getGenericsTypes();
if (genericsTypes != null) {
ClassNode closureReturnType = genericsTypes[0].getType();
Object data = field.getNodeMetaData(StaticTypesMarker.CLOSURE_ARGUMENTS);
if (data != null) {
Parameter[] parameters = (Parameter[]) data;
typeCheckClosureCall(callArguments, args, parameters);
}
storeType(call, closureReturnType);
}
} else if (objectExpression instanceof VariableExpression) {
Variable variable = findTargetVariable((VariableExpression) objectExpression);
if (variable instanceof ASTNode) {
Object data = ((ASTNode) variable).getNodeMetaData(StaticTypesMarker.CLOSURE_ARGUMENTS);
if (data != null) {
Parameter[] parameters = (Parameter[]) data;
typeCheckClosureCall(callArguments, args, parameters);
}
ClassNode type = getType(((ASTNode) variable));
if (type != null && type.equals(CLOSURE_TYPE)) {
GenericsType[] genericsTypes = type.getGenericsTypes();
type = OBJECT_TYPE;
if (genericsTypes != null) {
if (!genericsTypes[0].isPlaceholder()) {
type = genericsTypes[0].getType();
}
}
}
if (type != null) {
storeType(call, type);
}
}
} else if (objectExpression instanceof ClosureExpression) {
// we can get actual parameters directly
Parameter[] parameters = ((ClosureExpression) objectExpression).getParameters();
typeCheckClosureCall(callArguments, args, parameters);
ClassNode data = getInferredReturnType(objectExpression);
if (data != null) {
storeType(call, data);
}
}
int nbOfArgs;
if (callArguments instanceof ArgumentListExpression) {
ArgumentListExpression list = (ArgumentListExpression) callArguments;
nbOfArgs = list.getExpressions().size();
} else {
// todo : other cases
nbOfArgs = 0;
}
storeTargetMethod(call, nbOfArgs == 0 ? CLOSURE_CALL_NO_ARG : nbOfArgs == 1 ? CLOSURE_CALL_ONE_ARG : CLOSURE_CALL_VARGS);
} else {
// method call receivers are :
// - possible "with" receivers
// - the actual receiver as found in the method call expression
// - any of the potential receivers found in the instanceof temporary table
// in that order
List<Receiver<String>> receivers = new LinkedList<Receiver<String>>();
List<Receiver<String>> owners = makeOwnerList(objectExpression);
addReceivers(receivers, owners, call.isImplicitThis());
List<MethodNode> mn = null;
Receiver<String> chosenReceiver = null;
for (Receiver<String> currentReceiver : receivers) {
ClassNode receiverType = currentReceiver.getType();
mn = findMethod(receiverType, name, args);
// ensure that all methods are either static or declared by the current receiver or a superclass
if (!mn.isEmpty() && (typeCheckingContext.isInStaticContext || (receiverType.getModifiers() & Opcodes.ACC_STATIC) != 0) && (call.isImplicitThis() || (objectExpression instanceof VariableExpression && ((VariableExpression) objectExpression).isThisExpression()))) {
// we create separate method lists just to be able to print out
// a nice error message to the user
// a method is accessible if it is static, or if we are not in a static context and it is
// declared by the current receiver or a superclass
List<MethodNode> accessibleMethods = new LinkedList<MethodNode>();
List<MethodNode> inaccessibleMethods = new LinkedList<MethodNode>();
for (final MethodNode node : mn) {
if (node.isStatic() || (!typeCheckingContext.isInStaticContext && implementsInterfaceOrIsSubclassOf(receiverType, node.getDeclaringClass()))) {
accessibleMethods.add(node);
} else {
inaccessibleMethods.add(node);
}
}
mn = accessibleMethods;
if (accessibleMethods.isEmpty()) {
// choose an arbitrary method to display an error message
MethodNode node = inaccessibleMethods.get(0);
ClassNode owner = node.getDeclaringClass();
addStaticTypeError("Non static method " + owner.getName() + "#" + node.getName() + " cannot be called from static context", call);
}
}
if (!mn.isEmpty()) {
chosenReceiver = currentReceiver;
break;
}
}
if (mn.isEmpty() && typeCheckingContext.getEnclosingClosure() != null && args.length == 0) {
// add special handling of getDelegate() and getOwner()
if ("getDelegate".equals(name)) {
mn = Collections.singletonList(GET_DELEGATE);
} else if ("getOwner".equals(name)) {
mn = Collections.singletonList(GET_OWNER);
} else if ("getThisObject".equals(name)) {
mn = Collections.singletonList(GET_THISOBJECT);
}
}
if (mn.isEmpty()) {
mn = extension.handleMissingMethod(receiver, name, argumentList, args, call);
}
if (mn.isEmpty()) {
addNoMatchingMethodError(receiver, name, args, call);
} else {
if (areCategoryMethodCalls(mn, name, args)) {
addCategoryMethodCallError(call);
}
mn = disambiguateMethods(mn, chosenReceiver != null ? chosenReceiver.getType() : null, args, call);
if (mn.size() == 1) {
MethodNode directMethodCallCandidate = mn.get(0);
if (call.getNodeMetaData(StaticTypesMarker.DYNAMIC_RESOLUTION) == null && !directMethodCallCandidate.isStatic() && objectExpression instanceof ClassExpression && !"java.lang.Class".equals(directMethodCallCandidate.getDeclaringClass().getName())) {
ClassNode owner = directMethodCallCandidate.getDeclaringClass();
addStaticTypeError("Non static method " + owner.getName() + "#" + directMethodCallCandidate.getName() + " cannot be called from static context", call);
}
if (chosenReceiver == null) {
chosenReceiver = Receiver.make(directMethodCallCandidate.getDeclaringClass());
}
ClassNode returnType = getType(directMethodCallCandidate);
if (isUsingGenericsOrIsArrayUsingGenerics(returnType)) {
visitMethodCallArguments(chosenReceiver.getType(), argumentList, true, directMethodCallCandidate);
ClassNode irtg = inferReturnTypeGenerics(chosenReceiver.getType(), directMethodCallCandidate, callArguments, call.getGenericsTypes());
returnType = irtg != null && implementsInterfaceOrIsSubclassOf(irtg, returnType) ? irtg : returnType;
callArgsVisited = true;
}
if (directMethodCallCandidate == GET_DELEGATE && typeCheckingContext.getEnclosingClosure() != null) {
DelegationMetadata md = getDelegationMetadata(typeCheckingContext.getEnclosingClosure().getClosureExpression());
returnType = typeCheckingContext.getEnclosingClassNode();
if (md != null) {
returnType = md.getType();
}
}
if (typeCheckMethodsWithGenericsOrFail(chosenReceiver.getType(), args, mn.get(0), call)) {
returnType = adjustWithTraits(directMethodCallCandidate, chosenReceiver.getType(), args, returnType);
storeType(call, returnType);
storeTargetMethod(call, directMethodCallCandidate);
String data = chosenReceiver.getData();
if (data != null) {
// the method which has been chosen is supposed to be a call on delegate or owner
// so we store the information so that the static compiler may reuse it
call.putNodeMetaData(StaticTypesMarker.IMPLICIT_RECEIVER, data);
}
// if the object expression is a closure shared variable, we will have to perform a second pass
if (objectExpression instanceof VariableExpression) {
VariableExpression var = (VariableExpression) objectExpression;
if (var.isClosureSharedVariable()) {
SecondPassExpression<ClassNode[]> wrapper = new SecondPassExpression<ClassNode[]>(call, args);
typeCheckingContext.secondPassExpressions.add(wrapper);
}
}
}
} else {
addAmbiguousErrorMessage(mn, name, args, call);
}
}
}
// now that a method has been chosen, we are allowed to visit the closures
if (!callArgsVisited) {
MethodNode mn = (MethodNode) call.getNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET);
visitMethodCallArguments(receiver, argumentList, true, mn);
// GROOVY-6219
if (mn != null) {
List<Expression> argExpressions = argumentList.getExpressions();
Parameter[] parameters = mn.getParameters();
for (int i = 0; i < argExpressions.size() && i < parameters.length; i++) {
Expression arg = argExpressions.get(i);
ClassNode pType = parameters[i].getType();
ClassNode aType = getType(arg);
if (CLOSURE_TYPE.equals(pType) && CLOSURE_TYPE.equals(aType)) {
if (!isAssignableTo(aType, pType)) {
addNoMatchingMethodError(receiver, name, getArgumentTypes(argumentList), call);
call.removeNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET);
}
}
}
}
}
} finally {
typeCheckingContext.popEnclosingMethodCall();
extension.afterMethodCall(call);
}
}
use of org.codehaus.groovy.ast.MethodNode in project groovy by apache.
the class StaticTypeCheckingSupport method evaluateExpression.
/**
* A helper method that can be used to evaluate expressions as found in annotation
* parameters. For example, it will evaluate a constant, be it referenced directly as
* an integer or as a reference to a field.
*
* If this method throws an exception, then the expression cannot be evaluated on its own.
*
* @param expr the expression to be evaluated
* @param config the compiler configuration
* @return the result of the expression
*/
public static Object evaluateExpression(Expression expr, CompilerConfiguration config) {
String className = "Expression$" + UUID.randomUUID().toString().replace('-', '$');
ClassNode node = new ClassNode(className, Opcodes.ACC_PUBLIC, OBJECT_TYPE);
ReturnStatement code = new ReturnStatement(expr);
node.addMethod(new MethodNode("eval", Opcodes.ACC_PUBLIC + Opcodes.ACC_STATIC, OBJECT_TYPE, Parameter.EMPTY_ARRAY, ClassNode.EMPTY_ARRAY, code));
CompilerConfiguration copyConf = new CompilerConfiguration(config);
CompilationUnit cu = new CompilationUnit(copyConf);
cu.addClassNode(node);
cu.compile(Phases.CLASS_GENERATION);
@SuppressWarnings("unchecked") List<GroovyClass> classes = (List<GroovyClass>) cu.getClasses();
Class aClass = cu.getClassLoader().defineClass(className, classes.get(0).getBytes());
try {
return aClass.getMethod("eval").invoke(null);
} catch (IllegalAccessException e) {
throw new GroovyBugError(e);
} catch (InvocationTargetException e) {
throw new GroovyBugError(e);
} catch (NoSuchMethodException e) {
throw new GroovyBugError(e);
}
}
use of org.codehaus.groovy.ast.MethodNode in project groovy by apache.
the class StaticTypeCheckingVisitor method prettyPrintMethodList.
protected static String prettyPrintMethodList(List<MethodNode> nodes) {
StringBuilder sb = new StringBuilder("[");
for (int i = 0, nodesSize = nodes.size(); i < nodesSize; i++) {
final MethodNode node = nodes.get(i);
sb.append(node.getReturnType().toString(false));
sb.append(" ");
sb.append(node.getDeclaringClass().toString(false));
sb.append("#");
sb.append(toMethodParametersString(node.getName(), extractTypesFromParameters(node.getParameters())));
if (i < nodesSize - 1)
sb.append(", ");
}
sb.append("]");
return sb.toString();
}
Aggregations