Search in sources :

Example 41 with MethodNode

use of org.codehaus.groovy.ast.MethodNode in project groovy-core by groovy.

the class InitializerStrategy method createBuilderMethod.

private static MethodNode createBuilderMethod(String buildMethodName, ClassNode builder, int numFields, String builderMethodName) {
    final BlockStatement body = new BlockStatement();
    body.addStatement(returnS(callX(builder, buildMethodName)));
    ClassNode returnType = makeClassSafeWithGenerics(builder, unsetGenTypes(numFields));
    return new MethodNode(builderMethodName, PUBLIC_STATIC, returnType, NO_PARAMS, NO_EXCEPTIONS, body);
}
Also used : ClassNode(org.codehaus.groovy.ast.ClassNode) InnerClassNode(org.codehaus.groovy.ast.InnerClassNode) MethodNode(org.codehaus.groovy.ast.MethodNode) BlockStatement(org.codehaus.groovy.ast.stmt.BlockStatement)

Example 42 with MethodNode

use of org.codehaus.groovy.ast.MethodNode in project groovy-core by groovy.

the class StaticTypeCheckingVisitor method visitMethodCallExpression.

@Override
public void visitMethodCallExpression(MethodCallExpression call) {
    final String name = call.getMethodAsString();
    if (name == null) {
        addStaticTypeError("cannot resolve dynamic method name at compile time.", call.getMethod());
        return;
    }
    if (extension.beforeMethodCall(call)) {
        extension.afterMethodCall(call);
        return;
    }
    typeCheckingContext.pushEnclosingMethodCall(call);
    final Expression objectExpression = call.getObjectExpression();
    objectExpression.visit(this);
    call.getMethod().visit(this);
    // the call is made on a collection type
    if (call.isSpreadSafe()) {
        //TODO check if this should not be change to iterator based call logic
        ClassNode expressionType = getType(objectExpression);
        if (!implementsInterfaceOrIsSubclassOf(expressionType, Collection_TYPE) && !expressionType.isArray()) {
            addStaticTypeError("Spread operator can only be used on collection types", objectExpression);
            return;
        } else {
            // type check call as if it was made on component type
            ClassNode componentType = inferComponentType(expressionType, int_TYPE);
            MethodCallExpression subcall = new MethodCallExpression(new CastExpression(componentType, EmptyExpression.INSTANCE), name, call.getArguments());
            subcall.setLineNumber(call.getLineNumber());
            subcall.setColumnNumber(call.getColumnNumber());
            subcall.setImplicitThis(call.isImplicitThis());
            visitMethodCallExpression(subcall);
            // the inferred type here should be a list of what the subcall returns
            ClassNode subcallReturnType = getType(subcall);
            ClassNode listNode = LIST_TYPE.getPlainNodeReference();
            listNode.setGenericsTypes(new GenericsType[] { new GenericsType(wrapTypeIfNecessary(subcallReturnType)) });
            storeType(call, listNode);
            // store target method
            storeTargetMethod(call, (MethodNode) subcall.getNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET));
            typeCheckingContext.popEnclosingMethodCall();
            return;
        }
    }
    final ClassNode rememberLastItType = typeCheckingContext.lastImplicitItType;
    Expression callArguments = call.getArguments();
    ArgumentListExpression argumentList = InvocationWriter.makeArgumentList(callArguments);
    checkForbiddenSpreadArgument(argumentList);
    // for arguments, we need to visit closures *after* the method has been chosen
    final ClassNode receiver = getType(objectExpression);
    visitMethodCallArguments(receiver, argumentList, false, null);
    ClassNode[] args = getArgumentTypes(argumentList);
    final boolean isCallOnClosure = isClosureCall(name, objectExpression, callArguments);
    try {
        boolean callArgsVisited = false;
        if (isCallOnClosure) {
            // this is a closure.call() call
            if (objectExpression == VariableExpression.THIS_EXPRESSION) {
                // isClosureCall() check verified earlier that a field exists
                FieldNode field = typeCheckingContext.getEnclosingClassNode().getDeclaredField(name);
                GenericsType[] genericsTypes = field.getType().getGenericsTypes();
                if (genericsTypes != null) {
                    ClassNode closureReturnType = genericsTypes[0].getType();
                    Object data = field.getNodeMetaData(StaticTypesMarker.CLOSURE_ARGUMENTS);
                    if (data != null) {
                        Parameter[] parameters = (Parameter[]) data;
                        typeCheckClosureCall(callArguments, args, parameters);
                    }
                    storeType(call, closureReturnType);
                }
            } else if (objectExpression instanceof VariableExpression) {
                Variable variable = findTargetVariable((VariableExpression) objectExpression);
                if (variable instanceof ASTNode) {
                    Object data = ((ASTNode) variable).getNodeMetaData(StaticTypesMarker.CLOSURE_ARGUMENTS);
                    if (data != null) {
                        Parameter[] parameters = (Parameter[]) data;
                        typeCheckClosureCall(callArguments, args, parameters);
                    }
                    ClassNode type = getType(((ASTNode) variable));
                    if (type != null && type.equals(CLOSURE_TYPE)) {
                        GenericsType[] genericsTypes = type.getGenericsTypes();
                        type = OBJECT_TYPE;
                        if (genericsTypes != null) {
                            if (!genericsTypes[0].isPlaceholder()) {
                                type = genericsTypes[0].getType();
                            }
                        }
                    }
                    if (type != null) {
                        storeType(call, type);
                    }
                }
            } else if (objectExpression instanceof ClosureExpression) {
                // we can get actual parameters directly
                Parameter[] parameters = ((ClosureExpression) objectExpression).getParameters();
                typeCheckClosureCall(callArguments, args, parameters);
                ClassNode data = getInferredReturnType(objectExpression);
                if (data != null) {
                    storeType(call, data);
                }
            }
            int nbOfArgs = 0;
            if (callArguments instanceof ArgumentListExpression) {
                ArgumentListExpression list = (ArgumentListExpression) callArguments;
                nbOfArgs = list.getExpressions().size();
            } else {
                // todo : other cases
                nbOfArgs = 0;
            }
            storeTargetMethod(call, nbOfArgs == 0 ? CLOSURE_CALL_NO_ARG : nbOfArgs == 1 ? CLOSURE_CALL_ONE_ARG : CLOSURE_CALL_VARGS);
        } else {
            // method call receivers are :
            //   - possible "with" receivers
            //   - the actual receiver as found in the method call expression
            //   - any of the potential receivers found in the instanceof temporary table
            // in that order
            List<Receiver<String>> receivers = new LinkedList<Receiver<String>>();
            List<Receiver<String>> owners = makeOwnerList(objectExpression);
            addReceivers(receivers, owners, call.isImplicitThis());
            List<MethodNode> mn = null;
            Receiver<String> chosenReceiver = null;
            for (Receiver<String> currentReceiver : receivers) {
                mn = findMethod(currentReceiver.getType(), name, args);
                // methods are only static if we are in a static context
                if (!mn.isEmpty() && typeCheckingContext.isInStaticContext && (call.isImplicitThis() || (objectExpression instanceof VariableExpression && ((VariableExpression) objectExpression).isThisExpression()))) {
                    // we create a separate method list just to be able to print out
                    // a nice error message to the user
                    List<MethodNode> staticMethods = new LinkedList<MethodNode>();
                    List<MethodNode> nonStaticMethods = new LinkedList<MethodNode>();
                    for (final MethodNode node : mn) {
                        if (node.isStatic()) {
                            staticMethods.add(node);
                        } else {
                            nonStaticMethods.add(node);
                        }
                    }
                    mn = staticMethods;
                    if (staticMethods.isEmpty()) {
                        // choose an arbitrary method to display an error message
                        MethodNode node = nonStaticMethods.get(0);
                        ClassNode owner = node.getDeclaringClass();
                        addStaticTypeError("Non static method " + owner.getName() + "#" + node.getName() + " cannot be called from static context", call);
                    }
                }
                if (!mn.isEmpty()) {
                    chosenReceiver = currentReceiver;
                    break;
                }
            }
            if (mn.isEmpty() && typeCheckingContext.getEnclosingClosure() != null && args.length == 0) {
                // add special handling of getDelegate() and getOwner()
                if ("getDelegate".equals(name)) {
                    mn = Collections.singletonList(GET_DELEGATE);
                } else if ("getOwner".equals(name)) {
                    mn = Collections.singletonList(GET_OWNER);
                } else if ("getThisObject".equals(name)) {
                    mn = Collections.singletonList(GET_THISOBJECT);
                }
            }
            if (mn.isEmpty()) {
                mn = extension.handleMissingMethod(receiver, name, argumentList, args, call);
            }
            if (mn.isEmpty()) {
                addNoMatchingMethodError(receiver, name, args, call);
            } else {
                if (areCategoryMethodCalls(mn, name, args)) {
                    addCategoryMethodCallError(call);
                }
                mn = disambiguateMethods(mn, chosenReceiver != null ? chosenReceiver.getType() : null, args, call);
                if (mn.size() == 1) {
                    MethodNode directMethodCallCandidate = mn.get(0);
                    if (chosenReceiver == null) {
                        chosenReceiver = Receiver.make(directMethodCallCandidate.getDeclaringClass());
                    }
                    ClassNode returnType = getType(directMethodCallCandidate);
                    if (isUsingGenericsOrIsArrayUsingGenerics(returnType)) {
                        visitMethodCallArguments(chosenReceiver.getType(), argumentList, true, directMethodCallCandidate);
                        ClassNode irtg = inferReturnTypeGenerics(chosenReceiver.getType(), directMethodCallCandidate, callArguments, call.getGenericsTypes());
                        returnType = irtg != null && implementsInterfaceOrIsSubclassOf(irtg, returnType) ? irtg : returnType;
                        callArgsVisited = true;
                    }
                    if (directMethodCallCandidate == GET_DELEGATE && typeCheckingContext.getEnclosingClosure() != null) {
                        DelegationMetadata md = getDelegationMetadata(typeCheckingContext.getEnclosingClosure().getClosureExpression());
                        returnType = typeCheckingContext.getEnclosingClassNode();
                        if (md != null) {
                            returnType = md.getType();
                        }
                    }
                    if (typeCheckMethodsWithGenericsOrFail(chosenReceiver.getType(), args, mn.get(0), call)) {
                        returnType = adjustWithTraits(directMethodCallCandidate, chosenReceiver.getType(), args, returnType);
                        storeType(call, returnType);
                        storeTargetMethod(call, directMethodCallCandidate);
                        String data = chosenReceiver.getData();
                        if (data != null) {
                            // the method which has been chosen is supposed to be a call on delegate or owner
                            // so we store the information so that the static compiler may reuse it
                            call.putNodeMetaData(StaticTypesMarker.IMPLICIT_RECEIVER, data);
                        }
                        // if the object expression is a closure shared variable, we will have to perform a second pass
                        if (objectExpression instanceof VariableExpression) {
                            VariableExpression var = (VariableExpression) objectExpression;
                            if (var.isClosureSharedVariable()) {
                                SecondPassExpression<ClassNode[]> wrapper = new SecondPassExpression<ClassNode[]>(call, args);
                                typeCheckingContext.secondPassExpressions.add(wrapper);
                            }
                        }
                    }
                } else {
                    addAmbiguousErrorMessage(mn, name, args, call);
                }
            }
        }
        // now that a method has been chosen, we are allowed to visit the closures
        if (!callArgsVisited) {
            MethodNode mn = (MethodNode) call.getNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET);
            visitMethodCallArguments(receiver, argumentList, true, mn);
            // GROOVY-6219
            if (mn != null) {
                List<Expression> argExpressions = argumentList.getExpressions();
                Parameter[] parameters = mn.getParameters();
                for (int i = 0; i < argExpressions.size() && i < parameters.length; i++) {
                    Expression arg = argExpressions.get(i);
                    ClassNode pType = parameters[i].getType();
                    ClassNode aType = getType(arg);
                    if (CLOSURE_TYPE.equals(pType) && CLOSURE_TYPE.equals(aType)) {
                        if (!isAssignableTo(aType, pType)) {
                            addNoMatchingMethodError(receiver, name, getArgumentTypes(argumentList), call);
                            call.removeNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET);
                        }
                    }
                }
            }
        }
    } finally {
        typeCheckingContext.popEnclosingMethodCall();
        extension.afterMethodCall(call);
    }
}
Also used : Variable(org.codehaus.groovy.ast.Variable) DynamicVariable(org.codehaus.groovy.ast.DynamicVariable) MethodNode(org.codehaus.groovy.ast.MethodNode) GenericsType(org.codehaus.groovy.ast.GenericsType) ASTNode(org.codehaus.groovy.ast.ASTNode) LowestUpperBoundClassNode(org.codehaus.groovy.ast.tools.WideningCategories.LowestUpperBoundClassNode) ClassNode(org.codehaus.groovy.ast.ClassNode) InnerClassNode(org.codehaus.groovy.ast.InnerClassNode) FieldNode(org.codehaus.groovy.ast.FieldNode) ClosureSignatureHint(groovy.transform.stc.ClosureSignatureHint) LinkedList(java.util.LinkedList) Parameter(org.codehaus.groovy.ast.Parameter)

Example 43 with MethodNode

use of org.codehaus.groovy.ast.MethodNode in project groovy-core by groovy.

the class StaticTypeCheckingVisitor method collectAllInterfaceMethodsByName.

protected void collectAllInterfaceMethodsByName(final ClassNode receiver, final String name, final List<MethodNode> methods) {
    ClassNode[] interfaces = receiver.getInterfaces();
    if (interfaces != null && interfaces.length > 0) {
        for (ClassNode node : interfaces) {
            List<MethodNode> intfMethods = node.getMethods(name);
            methods.addAll(intfMethods);
            collectAllInterfaceMethodsByName(node, name, methods);
        }
    }
}
Also used : LowestUpperBoundClassNode(org.codehaus.groovy.ast.tools.WideningCategories.LowestUpperBoundClassNode) ClassNode(org.codehaus.groovy.ast.ClassNode) InnerClassNode(org.codehaus.groovy.ast.InnerClassNode) MethodNode(org.codehaus.groovy.ast.MethodNode)

Example 44 with MethodNode

use of org.codehaus.groovy.ast.MethodNode in project groovy-core by groovy.

the class StaticTypeCheckingVisitor method getType.

protected ClassNode getType(ASTNode exp) {
    ClassNode cn = exp.getNodeMetaData(StaticTypesMarker.INFERRED_TYPE);
    if (cn != null)
        return cn;
    if (exp instanceof ClassExpression) {
        ClassNode node = CLASS_Type.getPlainNodeReference();
        node.setGenericsTypes(new GenericsType[] { new GenericsType(((ClassExpression) exp).getType()) });
        return node;
    } else if (exp instanceof VariableExpression) {
        VariableExpression vexp = (VariableExpression) exp;
        if (vexp == VariableExpression.THIS_EXPRESSION)
            return makeThis();
        if (vexp == VariableExpression.SUPER_EXPRESSION)
            return makeSuper();
        ClassNode selfTrait = isTraitSelf(vexp);
        if (selfTrait != null)
            return makeSelf(selfTrait);
        final Variable variable = vexp.getAccessedVariable();
        if (variable instanceof FieldNode) {
            checkOrMarkPrivateAccess(vexp, (FieldNode) variable);
            return getType((FieldNode) variable);
        }
        if (variable != null && variable != vexp && variable instanceof VariableExpression) {
            return getType((Expression) variable);
        }
        if (variable instanceof Parameter) {
            Parameter parameter = (Parameter) variable;
            ClassNode type = typeCheckingContext.controlStructureVariables.get(parameter);
            TypeCheckingContext.EnclosingClosure enclosingClosure = typeCheckingContext.getEnclosingClosure();
            ClassNode[] closureParamTypes = (ClassNode[]) (enclosingClosure != null ? enclosingClosure.getClosureExpression().getNodeMetaData(StaticTypesMarker.CLOSURE_ARGUMENTS) : null);
            if (type == null && enclosingClosure != null && "it".equals(variable.getName()) && closureParamTypes != null) {
                final Parameter[] parameters = enclosingClosure.getClosureExpression().getParameters();
                if (parameters.length == 0 && getTemporaryTypesForExpression(vexp) == null) {
                    type = closureParamTypes[0];
                }
            }
            if (type != null) {
                storeType((VariableExpression) exp, type);
                return type;
            }
        }
    }
    if (exp instanceof ListExpression) {
        return inferListExpressionType((ListExpression) exp);
    } else if (exp instanceof MapExpression) {
        return inferMapExpressionType((MapExpression) exp);
    }
    if (exp instanceof ConstructorCallExpression) {
        return ((ConstructorCallExpression) exp).getType();
    }
    if (exp instanceof MethodNode) {
        if ((exp == GET_DELEGATE || exp == GET_OWNER || exp == GET_THISOBJECT) && typeCheckingContext.getEnclosingClosure() != null) {
            return typeCheckingContext.getEnclosingClassNode();
        }
        ClassNode ret = getInferredReturnType(exp);
        return ret != null ? ret : ((MethodNode) exp).getReturnType();
    }
    if (exp instanceof ClosureExpression) {
        ClassNode irt = getInferredReturnType(exp);
        if (irt != null) {
            irt = wrapTypeIfNecessary(irt);
            ClassNode result = CLOSURE_TYPE.getPlainNodeReference();
            result.setGenericsTypes(new GenericsType[] { new GenericsType(irt) });
            return result;
        }
    }
    if (exp instanceof RangeExpression) {
        ClassNode plain = ClassHelper.RANGE_TYPE.getPlainNodeReference();
        RangeExpression re = (RangeExpression) exp;
        ClassNode fromType = getType(re.getFrom());
        ClassNode toType = getType(re.getTo());
        if (fromType.equals(toType)) {
            plain.setGenericsTypes(new GenericsType[] { new GenericsType(wrapTypeIfNecessary(fromType)) });
        } else {
            plain.setGenericsTypes(new GenericsType[] { new GenericsType(wrapTypeIfNecessary(lowestUpperBound(fromType, toType))) });
        }
        return plain;
    }
    if (exp instanceof UnaryPlusExpression) {
        return getType(((UnaryPlusExpression) exp).getExpression());
    }
    if (exp instanceof UnaryMinusExpression) {
        return getType(((UnaryMinusExpression) exp).getExpression());
    }
    if (exp instanceof BitwiseNegationExpression) {
        return getType(((BitwiseNegationExpression) exp).getExpression());
    }
    if (exp instanceof MethodCall) {
        MethodNode target = (MethodNode) exp.getNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET);
        if (target != null) {
            return getType(target);
        }
    }
    if (exp instanceof Parameter) {
        return ((Parameter) exp).getOriginType();
    }
    if (exp instanceof FieldNode) {
        FieldNode fn = (FieldNode) exp;
        return getGenericsResolvedTypeOfFieldOrProperty(fn, fn.getOriginType());
    }
    if (exp instanceof PropertyNode) {
        PropertyNode pn = (PropertyNode) exp;
        return getGenericsResolvedTypeOfFieldOrProperty(pn, pn.getOriginType());
    }
    return exp instanceof VariableExpression ? ((VariableExpression) exp).getOriginType() : ((Expression) exp).getType();
}
Also used : LowestUpperBoundClassNode(org.codehaus.groovy.ast.tools.WideningCategories.LowestUpperBoundClassNode) ClassNode(org.codehaus.groovy.ast.ClassNode) InnerClassNode(org.codehaus.groovy.ast.InnerClassNode) Variable(org.codehaus.groovy.ast.Variable) DynamicVariable(org.codehaus.groovy.ast.DynamicVariable) FieldNode(org.codehaus.groovy.ast.FieldNode) MethodNode(org.codehaus.groovy.ast.MethodNode) PropertyNode(org.codehaus.groovy.ast.PropertyNode) GenericsType(org.codehaus.groovy.ast.GenericsType) Parameter(org.codehaus.groovy.ast.Parameter)

Example 45 with MethodNode

use of org.codehaus.groovy.ast.MethodNode in project groovy-core by groovy.

the class StaticTypeCheckingVisitor method inferSAMType.

private void inferSAMType(Parameter param, ClassNode receiver, MethodNode methodWithSAMParameter, ArgumentListExpression originalMethodCallArguments, ClosureExpression openBlock) {
    // In a method call with SAM coercion the inference is to be
    // understood as a two phase process. We have the normal method call
    // to the target method with the closure argument and we have the 
    // SAM method that will be called inside the normal target method. 
    // To infer correctly we have to "simulate" this process. We know the
    // call to the closure will be done through the SAM type, so the SAM
    // type generics deliver information about the Closure. At the same
    // time the SAM class is used in the target method parameter, 
    // providing a connection from the SAM type and the target method
    // declaration class.
    // First we try to get as much information about the declaration
    // class through the receiver
    Map<String, GenericsType> targetMethodDeclarationClassConnections = new HashMap<String, GenericsType>();
    extractGenericsConnections(targetMethodDeclarationClassConnections, receiver, receiver.redirect());
    // then we use the method with the SAM parameter to get more information about the declaration
    Parameter[] parametersOfMethodContainingSAM = methodWithSAMParameter.getParameters();
    for (int i = 0; i < parametersOfMethodContainingSAM.length; i++) {
        Expression callArg = originalMethodCallArguments.getExpression(i);
        // we look at the closure later in detail, so skip it here
        if (callArg == openBlock)
            continue;
        ClassNode parameterType = parametersOfMethodContainingSAM[i].getType();
        extractGenericsConnections(targetMethodDeclarationClassConnections, getType(callArg), parameterType);
    }
    // To make a connection to the SAM class we use that new information
    // to replace the generics in the SAM type parameter of the target
    // method and than that to make the connections to the SAM type generics
    ClassNode paramTypeWithReceiverInformation = applyGenericsContext(targetMethodDeclarationClassConnections, param.getOriginType());
    Map<String, GenericsType> SAMTypeConnections = new HashMap<String, GenericsType>();
    ClassNode classForSAM = paramTypeWithReceiverInformation.redirect();
    extractGenericsConnections(SAMTypeConnections, paramTypeWithReceiverInformation, classForSAM);
    // should the open block provide final information we apply that
    // to the corresponding parameters of the SAM type method
    MethodNode methodForSAM = findSAM(classForSAM);
    ClassNode[] parameterTypesForSAM = extractTypesFromParameters(methodForSAM.getParameters());
    ClassNode[] blockParameterTypes = (ClassNode[]) openBlock.getNodeMetaData(StaticTypesMarker.CLOSURE_ARGUMENTS);
    if (blockParameterTypes == null) {
        Parameter[] p = openBlock.getParameters();
        if (p.length == 0 && parameterTypesForSAM.length != 0) {
            // implicit it
            blockParameterTypes = parameterTypesForSAM;
        } else {
            blockParameterTypes = extractTypesFromParameters(p);
        }
    }
    for (int i = 0; i < blockParameterTypes.length; i++) {
        //TODO: equal length guaranteed?
        extractGenericsConnections(SAMTypeConnections, blockParameterTypes[i], parameterTypesForSAM[i]);
    }
    // store the type of parameter and block type as meta information
    for (int i = 0; i < blockParameterTypes.length; i++) {
        //TODO: equal length guaranteed?
        ClassNode resolvedParameter = applyGenericsContext(SAMTypeConnections, parameterTypesForSAM[i]);
        blockParameterTypes[i] = resolvedParameter;
    }
    openBlock.putNodeMetaData(StaticTypesMarker.CLOSURE_ARGUMENTS, blockParameterTypes);
}
Also used : LowestUpperBoundClassNode(org.codehaus.groovy.ast.tools.WideningCategories.LowestUpperBoundClassNode) ClassNode(org.codehaus.groovy.ast.ClassNode) InnerClassNode(org.codehaus.groovy.ast.InnerClassNode) MethodNode(org.codehaus.groovy.ast.MethodNode) LinkedHashMap(java.util.LinkedHashMap) ListHashMap(org.codehaus.groovy.util.ListHashMap) HashMap(java.util.HashMap) GenericsType(org.codehaus.groovy.ast.GenericsType) Parameter(org.codehaus.groovy.ast.Parameter) ClosureSignatureHint(groovy.transform.stc.ClosureSignatureHint)

Aggregations

MethodNode (org.codehaus.groovy.ast.MethodNode)294 ClassNode (org.codehaus.groovy.ast.ClassNode)193 InnerClassNode (org.codehaus.groovy.ast.InnerClassNode)94 Parameter (org.codehaus.groovy.ast.Parameter)79 BlockStatement (org.codehaus.groovy.ast.stmt.BlockStatement)65 FieldNode (org.codehaus.groovy.ast.FieldNode)57 LinkedList (java.util.LinkedList)50 VariableExpression (org.codehaus.groovy.ast.expr.VariableExpression)50 Expression (org.codehaus.groovy.ast.expr.Expression)49 LowestUpperBoundClassNode (org.codehaus.groovy.ast.tools.WideningCategories.LowestUpperBoundClassNode)47 MethodCallExpression (org.codehaus.groovy.ast.expr.MethodCallExpression)43 AnnotationNode (org.codehaus.groovy.ast.AnnotationNode)39 ArrayList (java.util.ArrayList)36 ExpressionStatement (org.codehaus.groovy.ast.stmt.ExpressionStatement)36 Statement (org.codehaus.groovy.ast.stmt.Statement)34 ConstantExpression (org.codehaus.groovy.ast.expr.ConstantExpression)33 ArgumentListExpression (org.codehaus.groovy.ast.expr.ArgumentListExpression)30 ClassExpression (org.codehaus.groovy.ast.expr.ClassExpression)29 BinaryExpression (org.codehaus.groovy.ast.expr.BinaryExpression)27 ReturnStatement (org.codehaus.groovy.ast.stmt.ReturnStatement)27