use of org.codehaus.groovy.ast.Variable in project groovy-core by groovy.
the class TraitReceiverTransformer method transform.
@Override
public Expression transform(final Expression exp) {
ClassNode weavedType = weaved.getOriginType();
if (exp instanceof BinaryExpression) {
return transformBinaryExpression((BinaryExpression) exp, weavedType);
} else if (exp instanceof StaticMethodCallExpression) {
StaticMethodCallExpression call = (StaticMethodCallExpression) exp;
ClassNode ownerType = call.getOwnerType();
if (traitClass.equals(ownerType)) {
MethodCallExpression result = new MethodCallExpression(new VariableExpression(weaved), call.getMethod(), transform(call.getArguments()));
result.setSafe(false);
result.setImplicitThis(false);
result.setSpreadSafe(false);
result.setSourcePosition(call);
return result;
}
} else if (exp instanceof MethodCallExpression) {
MethodCallExpression call = (MethodCallExpression) exp;
Expression obj = call.getObjectExpression();
if (call.isImplicitThis() || "this".equals(obj.getText())) {
return transformMethodCallOnThis(call);
} else if ("super".equals(obj.getText())) {
return transformSuperMethodCall(call);
}
} else if (exp instanceof FieldExpression) {
return transformFieldExpression((FieldExpression) exp);
} else if (exp instanceof VariableExpression) {
VariableExpression vexp = (VariableExpression) exp;
Variable accessedVariable = vexp.getAccessedVariable();
if (accessedVariable instanceof FieldNode) {
FieldNode fn = (FieldNode) accessedVariable;
Expression receiver = createFieldHelperReceiver();
MethodCallExpression mce;
boolean isStatic = fn.isStatic();
if (isStatic) {
receiver = createStaticReceiver(receiver);
}
mce = new MethodCallExpression(receiver, Traits.helperGetterName(fn), ArgumentListExpression.EMPTY_ARGUMENTS);
mce.setSourcePosition(exp);
mce.setImplicitThis(false);
markDynamicCall(mce, fn, isStatic);
return mce;
} else if (accessedVariable instanceof PropertyNode) {
String propName = accessedVariable.getName();
if (knownFields.contains(propName)) {
String method = Traits.helperGetterName(new FieldNode(propName, 0, ClassHelper.OBJECT_TYPE, weavedType, null));
MethodCallExpression mce = new MethodCallExpression(createFieldHelperReceiver(), method, ArgumentListExpression.EMPTY_ARGUMENTS);
mce.setSourcePosition(exp);
mce.setImplicitThis(false);
return mce;
} else {
return new PropertyExpression(new VariableExpression(weaved), accessedVariable.getName());
}
} else if (accessedVariable instanceof DynamicVariable) {
return new PropertyExpression(new VariableExpression(weaved), accessedVariable.getName());
}
if (vexp.isThisExpression()) {
VariableExpression res = new VariableExpression(weaved);
res.setSourcePosition(exp);
return res;
}
if (vexp.isSuperExpression()) {
throwSuperError(vexp);
}
} else if (exp instanceof PropertyExpression) {
PropertyExpression pexp = (PropertyExpression) exp;
Expression object = pexp.getObjectExpression();
if (pexp.isImplicitThis() || "this".equals(object.getText())) {
String propName = pexp.getPropertyAsString();
if (knownFields.contains(propName)) {
String method = Traits.helperGetterName(new FieldNode(propName, 0, ClassHelper.OBJECT_TYPE, weavedType, null));
MethodCallExpression mce = new MethodCallExpression(createFieldHelperReceiver(), method, ArgumentListExpression.EMPTY_ARGUMENTS);
mce.setSourcePosition(exp);
mce.setImplicitThis(false);
return mce;
}
}
} else if (exp instanceof ClosureExpression) {
MethodCallExpression mce = new MethodCallExpression(exp, "rehydrate", new ArgumentListExpression(new VariableExpression(weaved), new VariableExpression(weaved), new VariableExpression(weaved)));
mce.setImplicitThis(false);
mce.setSourcePosition(exp);
((ClosureExpression) exp).getCode().visit(this);
// The rewrite we do is causing some troubles with type checking, which will
// not be able to perform closure parameter type inference
// so we store the replacement, which will be done *after* type checking.
exp.putNodeMetaData(TraitASTTransformation.POST_TYPECHECKING_REPLACEMENT, mce);
return exp;
}
// todo: unary expressions (field++, field+=, ...)
return super.transform(exp);
}
use of org.codehaus.groovy.ast.Variable in project groovy-core by groovy.
the class StaticTypeCheckingVisitor method visitMethodCallExpression.
@Override
public void visitMethodCallExpression(MethodCallExpression call) {
final String name = call.getMethodAsString();
if (name == null) {
addStaticTypeError("cannot resolve dynamic method name at compile time.", call.getMethod());
return;
}
if (extension.beforeMethodCall(call)) {
extension.afterMethodCall(call);
return;
}
typeCheckingContext.pushEnclosingMethodCall(call);
final Expression objectExpression = call.getObjectExpression();
objectExpression.visit(this);
call.getMethod().visit(this);
// the call is made on a collection type
if (call.isSpreadSafe()) {
//TODO check if this should not be change to iterator based call logic
ClassNode expressionType = getType(objectExpression);
if (!implementsInterfaceOrIsSubclassOf(expressionType, Collection_TYPE) && !expressionType.isArray()) {
addStaticTypeError("Spread operator can only be used on collection types", objectExpression);
return;
} else {
// type check call as if it was made on component type
ClassNode componentType = inferComponentType(expressionType, int_TYPE);
MethodCallExpression subcall = new MethodCallExpression(new CastExpression(componentType, EmptyExpression.INSTANCE), name, call.getArguments());
subcall.setLineNumber(call.getLineNumber());
subcall.setColumnNumber(call.getColumnNumber());
subcall.setImplicitThis(call.isImplicitThis());
visitMethodCallExpression(subcall);
// the inferred type here should be a list of what the subcall returns
ClassNode subcallReturnType = getType(subcall);
ClassNode listNode = LIST_TYPE.getPlainNodeReference();
listNode.setGenericsTypes(new GenericsType[] { new GenericsType(wrapTypeIfNecessary(subcallReturnType)) });
storeType(call, listNode);
// store target method
storeTargetMethod(call, (MethodNode) subcall.getNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET));
typeCheckingContext.popEnclosingMethodCall();
return;
}
}
final ClassNode rememberLastItType = typeCheckingContext.lastImplicitItType;
Expression callArguments = call.getArguments();
ArgumentListExpression argumentList = InvocationWriter.makeArgumentList(callArguments);
checkForbiddenSpreadArgument(argumentList);
// for arguments, we need to visit closures *after* the method has been chosen
final ClassNode receiver = getType(objectExpression);
visitMethodCallArguments(receiver, argumentList, false, null);
ClassNode[] args = getArgumentTypes(argumentList);
final boolean isCallOnClosure = isClosureCall(name, objectExpression, callArguments);
try {
boolean callArgsVisited = false;
if (isCallOnClosure) {
// this is a closure.call() call
if (objectExpression == VariableExpression.THIS_EXPRESSION) {
// isClosureCall() check verified earlier that a field exists
FieldNode field = typeCheckingContext.getEnclosingClassNode().getDeclaredField(name);
GenericsType[] genericsTypes = field.getType().getGenericsTypes();
if (genericsTypes != null) {
ClassNode closureReturnType = genericsTypes[0].getType();
Object data = field.getNodeMetaData(StaticTypesMarker.CLOSURE_ARGUMENTS);
if (data != null) {
Parameter[] parameters = (Parameter[]) data;
typeCheckClosureCall(callArguments, args, parameters);
}
storeType(call, closureReturnType);
}
} else if (objectExpression instanceof VariableExpression) {
Variable variable = findTargetVariable((VariableExpression) objectExpression);
if (variable instanceof ASTNode) {
Object data = ((ASTNode) variable).getNodeMetaData(StaticTypesMarker.CLOSURE_ARGUMENTS);
if (data != null) {
Parameter[] parameters = (Parameter[]) data;
typeCheckClosureCall(callArguments, args, parameters);
}
ClassNode type = getType(((ASTNode) variable));
if (type != null && type.equals(CLOSURE_TYPE)) {
GenericsType[] genericsTypes = type.getGenericsTypes();
type = OBJECT_TYPE;
if (genericsTypes != null) {
if (!genericsTypes[0].isPlaceholder()) {
type = genericsTypes[0].getType();
}
}
}
if (type != null) {
storeType(call, type);
}
}
} else if (objectExpression instanceof ClosureExpression) {
// we can get actual parameters directly
Parameter[] parameters = ((ClosureExpression) objectExpression).getParameters();
typeCheckClosureCall(callArguments, args, parameters);
ClassNode data = getInferredReturnType(objectExpression);
if (data != null) {
storeType(call, data);
}
}
int nbOfArgs = 0;
if (callArguments instanceof ArgumentListExpression) {
ArgumentListExpression list = (ArgumentListExpression) callArguments;
nbOfArgs = list.getExpressions().size();
} else {
// todo : other cases
nbOfArgs = 0;
}
storeTargetMethod(call, nbOfArgs == 0 ? CLOSURE_CALL_NO_ARG : nbOfArgs == 1 ? CLOSURE_CALL_ONE_ARG : CLOSURE_CALL_VARGS);
} else {
// method call receivers are :
// - possible "with" receivers
// - the actual receiver as found in the method call expression
// - any of the potential receivers found in the instanceof temporary table
// in that order
List<Receiver<String>> receivers = new LinkedList<Receiver<String>>();
List<Receiver<String>> owners = makeOwnerList(objectExpression);
addReceivers(receivers, owners, call.isImplicitThis());
List<MethodNode> mn = null;
Receiver<String> chosenReceiver = null;
for (Receiver<String> currentReceiver : receivers) {
mn = findMethod(currentReceiver.getType(), name, args);
// methods are only static if we are in a static context
if (!mn.isEmpty() && typeCheckingContext.isInStaticContext && (call.isImplicitThis() || (objectExpression instanceof VariableExpression && ((VariableExpression) objectExpression).isThisExpression()))) {
// we create a separate method list just to be able to print out
// a nice error message to the user
List<MethodNode> staticMethods = new LinkedList<MethodNode>();
List<MethodNode> nonStaticMethods = new LinkedList<MethodNode>();
for (final MethodNode node : mn) {
if (node.isStatic()) {
staticMethods.add(node);
} else {
nonStaticMethods.add(node);
}
}
mn = staticMethods;
if (staticMethods.isEmpty()) {
// choose an arbitrary method to display an error message
MethodNode node = nonStaticMethods.get(0);
ClassNode owner = node.getDeclaringClass();
addStaticTypeError("Non static method " + owner.getName() + "#" + node.getName() + " cannot be called from static context", call);
}
}
if (!mn.isEmpty()) {
chosenReceiver = currentReceiver;
break;
}
}
if (mn.isEmpty() && typeCheckingContext.getEnclosingClosure() != null && args.length == 0) {
// add special handling of getDelegate() and getOwner()
if ("getDelegate".equals(name)) {
mn = Collections.singletonList(GET_DELEGATE);
} else if ("getOwner".equals(name)) {
mn = Collections.singletonList(GET_OWNER);
} else if ("getThisObject".equals(name)) {
mn = Collections.singletonList(GET_THISOBJECT);
}
}
if (mn.isEmpty()) {
mn = extension.handleMissingMethod(receiver, name, argumentList, args, call);
}
if (mn.isEmpty()) {
addNoMatchingMethodError(receiver, name, args, call);
} else {
if (areCategoryMethodCalls(mn, name, args)) {
addCategoryMethodCallError(call);
}
mn = disambiguateMethods(mn, chosenReceiver != null ? chosenReceiver.getType() : null, args, call);
if (mn.size() == 1) {
MethodNode directMethodCallCandidate = mn.get(0);
if (chosenReceiver == null) {
chosenReceiver = Receiver.make(directMethodCallCandidate.getDeclaringClass());
}
ClassNode returnType = getType(directMethodCallCandidate);
if (isUsingGenericsOrIsArrayUsingGenerics(returnType)) {
visitMethodCallArguments(chosenReceiver.getType(), argumentList, true, directMethodCallCandidate);
ClassNode irtg = inferReturnTypeGenerics(chosenReceiver.getType(), directMethodCallCandidate, callArguments, call.getGenericsTypes());
returnType = irtg != null && implementsInterfaceOrIsSubclassOf(irtg, returnType) ? irtg : returnType;
callArgsVisited = true;
}
if (directMethodCallCandidate == GET_DELEGATE && typeCheckingContext.getEnclosingClosure() != null) {
DelegationMetadata md = getDelegationMetadata(typeCheckingContext.getEnclosingClosure().getClosureExpression());
returnType = typeCheckingContext.getEnclosingClassNode();
if (md != null) {
returnType = md.getType();
}
}
if (typeCheckMethodsWithGenericsOrFail(chosenReceiver.getType(), args, mn.get(0), call)) {
returnType = adjustWithTraits(directMethodCallCandidate, chosenReceiver.getType(), args, returnType);
storeType(call, returnType);
storeTargetMethod(call, directMethodCallCandidate);
String data = chosenReceiver.getData();
if (data != null) {
// the method which has been chosen is supposed to be a call on delegate or owner
// so we store the information so that the static compiler may reuse it
call.putNodeMetaData(StaticTypesMarker.IMPLICIT_RECEIVER, data);
}
// if the object expression is a closure shared variable, we will have to perform a second pass
if (objectExpression instanceof VariableExpression) {
VariableExpression var = (VariableExpression) objectExpression;
if (var.isClosureSharedVariable()) {
SecondPassExpression<ClassNode[]> wrapper = new SecondPassExpression<ClassNode[]>(call, args);
typeCheckingContext.secondPassExpressions.add(wrapper);
}
}
}
} else {
addAmbiguousErrorMessage(mn, name, args, call);
}
}
}
// now that a method has been chosen, we are allowed to visit the closures
if (!callArgsVisited) {
MethodNode mn = (MethodNode) call.getNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET);
visitMethodCallArguments(receiver, argumentList, true, mn);
// GROOVY-6219
if (mn != null) {
List<Expression> argExpressions = argumentList.getExpressions();
Parameter[] parameters = mn.getParameters();
for (int i = 0; i < argExpressions.size() && i < parameters.length; i++) {
Expression arg = argExpressions.get(i);
ClassNode pType = parameters[i].getType();
ClassNode aType = getType(arg);
if (CLOSURE_TYPE.equals(pType) && CLOSURE_TYPE.equals(aType)) {
if (!isAssignableTo(aType, pType)) {
addNoMatchingMethodError(receiver, name, getArgumentTypes(argumentList), call);
call.removeNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET);
}
}
}
}
}
} finally {
typeCheckingContext.popEnclosingMethodCall();
extension.afterMethodCall(call);
}
}
use of org.codehaus.groovy.ast.Variable in project groovy-core by groovy.
the class StaticTypeCheckingVisitor method getType.
protected ClassNode getType(ASTNode exp) {
ClassNode cn = exp.getNodeMetaData(StaticTypesMarker.INFERRED_TYPE);
if (cn != null)
return cn;
if (exp instanceof ClassExpression) {
ClassNode node = CLASS_Type.getPlainNodeReference();
node.setGenericsTypes(new GenericsType[] { new GenericsType(((ClassExpression) exp).getType()) });
return node;
} else if (exp instanceof VariableExpression) {
VariableExpression vexp = (VariableExpression) exp;
if (vexp == VariableExpression.THIS_EXPRESSION)
return makeThis();
if (vexp == VariableExpression.SUPER_EXPRESSION)
return makeSuper();
ClassNode selfTrait = isTraitSelf(vexp);
if (selfTrait != null)
return makeSelf(selfTrait);
final Variable variable = vexp.getAccessedVariable();
if (variable instanceof FieldNode) {
checkOrMarkPrivateAccess(vexp, (FieldNode) variable);
return getType((FieldNode) variable);
}
if (variable != null && variable != vexp && variable instanceof VariableExpression) {
return getType((Expression) variable);
}
if (variable instanceof Parameter) {
Parameter parameter = (Parameter) variable;
ClassNode type = typeCheckingContext.controlStructureVariables.get(parameter);
TypeCheckingContext.EnclosingClosure enclosingClosure = typeCheckingContext.getEnclosingClosure();
ClassNode[] closureParamTypes = (ClassNode[]) (enclosingClosure != null ? enclosingClosure.getClosureExpression().getNodeMetaData(StaticTypesMarker.CLOSURE_ARGUMENTS) : null);
if (type == null && enclosingClosure != null && "it".equals(variable.getName()) && closureParamTypes != null) {
final Parameter[] parameters = enclosingClosure.getClosureExpression().getParameters();
if (parameters.length == 0 && getTemporaryTypesForExpression(vexp) == null) {
type = closureParamTypes[0];
}
}
if (type != null) {
storeType((VariableExpression) exp, type);
return type;
}
}
}
if (exp instanceof ListExpression) {
return inferListExpressionType((ListExpression) exp);
} else if (exp instanceof MapExpression) {
return inferMapExpressionType((MapExpression) exp);
}
if (exp instanceof ConstructorCallExpression) {
return ((ConstructorCallExpression) exp).getType();
}
if (exp instanceof MethodNode) {
if ((exp == GET_DELEGATE || exp == GET_OWNER || exp == GET_THISOBJECT) && typeCheckingContext.getEnclosingClosure() != null) {
return typeCheckingContext.getEnclosingClassNode();
}
ClassNode ret = getInferredReturnType(exp);
return ret != null ? ret : ((MethodNode) exp).getReturnType();
}
if (exp instanceof ClosureExpression) {
ClassNode irt = getInferredReturnType(exp);
if (irt != null) {
irt = wrapTypeIfNecessary(irt);
ClassNode result = CLOSURE_TYPE.getPlainNodeReference();
result.setGenericsTypes(new GenericsType[] { new GenericsType(irt) });
return result;
}
}
if (exp instanceof RangeExpression) {
ClassNode plain = ClassHelper.RANGE_TYPE.getPlainNodeReference();
RangeExpression re = (RangeExpression) exp;
ClassNode fromType = getType(re.getFrom());
ClassNode toType = getType(re.getTo());
if (fromType.equals(toType)) {
plain.setGenericsTypes(new GenericsType[] { new GenericsType(wrapTypeIfNecessary(fromType)) });
} else {
plain.setGenericsTypes(new GenericsType[] { new GenericsType(wrapTypeIfNecessary(lowestUpperBound(fromType, toType))) });
}
return plain;
}
if (exp instanceof UnaryPlusExpression) {
return getType(((UnaryPlusExpression) exp).getExpression());
}
if (exp instanceof UnaryMinusExpression) {
return getType(((UnaryMinusExpression) exp).getExpression());
}
if (exp instanceof BitwiseNegationExpression) {
return getType(((BitwiseNegationExpression) exp).getExpression());
}
if (exp instanceof MethodCall) {
MethodNode target = (MethodNode) exp.getNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET);
if (target != null) {
return getType(target);
}
}
if (exp instanceof Parameter) {
return ((Parameter) exp).getOriginType();
}
if (exp instanceof FieldNode) {
FieldNode fn = (FieldNode) exp;
return getGenericsResolvedTypeOfFieldOrProperty(fn, fn.getOriginType());
}
if (exp instanceof PropertyNode) {
PropertyNode pn = (PropertyNode) exp;
return getGenericsResolvedTypeOfFieldOrProperty(pn, pn.getOriginType());
}
return exp instanceof VariableExpression ? ((VariableExpression) exp).getOriginType() : ((Expression) exp).getType();
}
use of org.codehaus.groovy.ast.Variable in project groovy-core by groovy.
the class StaticTypeCheckingVisitor method saveVariableExpressionMetadata.
protected void saveVariableExpressionMetadata(final Set<VariableExpression> closureSharedExpressions, final Map<VariableExpression, ListHashMap> typesBeforeVisit) {
for (VariableExpression ve : closureSharedExpressions) {
// GROOVY-6921: We must force a call to getType in order to update closure shared variable which types are
// inferred thanks to closure parameter type inference
ClassNode cn = getType(ve);
ListHashMap<StaticTypesMarker, Object> metadata = new ListHashMap<StaticTypesMarker, Object>();
for (StaticTypesMarker marker : StaticTypesMarker.values()) {
Object value = ve.getNodeMetaData(marker);
if (value != null) {
metadata.put(marker, value);
}
}
typesBeforeVisit.put(ve, metadata);
Variable accessedVariable = ve.getAccessedVariable();
if (accessedVariable != ve && accessedVariable instanceof VariableExpression) {
saveVariableExpressionMetadata(Collections.singleton((VariableExpression) accessedVariable), typesBeforeVisit);
}
}
}
use of org.codehaus.groovy.ast.Variable in project groovy-core by groovy.
the class StaticTypeCheckingVisitor method performSecondPass.
public void performSecondPass() {
for (SecondPassExpression wrapper : typeCheckingContext.secondPassExpressions) {
Expression expression = wrapper.getExpression();
if (expression instanceof BinaryExpression) {
Expression left = ((BinaryExpression) expression).getLeftExpression();
if (left instanceof VariableExpression) {
// should always be the case
// this should always be the case, but adding a test is safer
Variable target = findTargetVariable((VariableExpression) left);
if (target instanceof VariableExpression) {
VariableExpression var = (VariableExpression) target;
List<ClassNode> classNodes = typeCheckingContext.closureSharedVariablesAssignmentTypes.get(var);
if (classNodes != null && classNodes.size() > 1) {
ClassNode lub = lowestUpperBound(classNodes);
String message = getOperationName(((BinaryExpression) expression).getOperation().getType());
if (message != null) {
List<MethodNode> method = findMethod(lub, message, getType(((BinaryExpression) expression).getRightExpression()));
if (method.isEmpty()) {
addStaticTypeError("A closure shared variable [" + target.getName() + "] has been assigned with various types and the method" + " [" + toMethodParametersString(message, getType(((BinaryExpression) expression).getRightExpression())) + "]" + " does not exist in the lowest upper bound of those types: [" + lub.toString(false) + "]. In general, this is a bad practice (variable reuse) because the compiler cannot" + " determine safely what is the type of the variable at the moment of the call in a multithreaded context.", expression);
}
}
}
}
}
} else if (expression instanceof MethodCallExpression) {
MethodCallExpression call = (MethodCallExpression) expression;
Expression objectExpression = call.getObjectExpression();
if (objectExpression instanceof VariableExpression) {
// this should always be the case, but adding a test is safer
Variable target = findTargetVariable((VariableExpression) objectExpression);
if (target instanceof VariableExpression) {
VariableExpression var = (VariableExpression) target;
List<ClassNode> classNodes = typeCheckingContext.closureSharedVariablesAssignmentTypes.get(var);
if (classNodes != null && classNodes.size() > 1) {
ClassNode lub = lowestUpperBound(classNodes);
MethodNode methodNode = (MethodNode) call.getNodeMetaData(StaticTypesMarker.DIRECT_METHOD_CALL_TARGET);
// we must check that such a method exists on the LUB
Parameter[] parameters = methodNode.getParameters();
ClassNode[] params = extractTypesFromParameters(parameters);
ClassNode[] argTypes = (ClassNode[]) wrapper.getData();
List<MethodNode> method = findMethod(lub, methodNode.getName(), argTypes);
if (method.size() != 1) {
addStaticTypeError("A closure shared variable [" + target.getName() + "] has been assigned with various types and the method" + " [" + toMethodParametersString(methodNode.getName(), params) + "]" + " does not exist in the lowest upper bound of those types: [" + lub.toString(false) + "]. In general, this is a bad practice (variable reuse) because the compiler cannot" + " determine safely what is the type of the variable at the moment of the call in a multithreaded context.", call);
}
}
}
}
}
}
// give a chance to type checker extensions to throw errors based on information gathered afterwards
extension.finish();
}
Aggregations