use of org.graalvm.compiler.nodes.AbstractBeginNode in project graal by oracle.
the class DefaultLoopPolicies method shouldUnswitch.
@Override
public boolean shouldUnswitch(LoopEx loop, List<ControlSplitNode> controlSplits) {
int phis = 0;
StructuredGraph graph = loop.loopBegin().graph();
DebugContext debug = graph.getDebug();
NodeBitMap branchNodes = graph.createNodeBitMap();
for (ControlSplitNode controlSplit : controlSplits) {
for (Node successor : controlSplit.successors()) {
AbstractBeginNode branch = (AbstractBeginNode) successor;
// this may count twice because of fall-through in switches
loop.nodesInLoopBranch(branchNodes, branch);
}
Block postDomBlock = loop.loopsData().getCFG().blockFor(controlSplit).getPostdominator();
if (postDomBlock != null) {
IsolatedInitialization.UNSWITCH_SPLIT_WITH_PHIS.increment(debug);
phis += ((MergeNode) postDomBlock.getBeginNode()).phis().count();
}
}
int inBranchTotal = branchNodes.count();
CountingClosure stateNodesCount = new CountingClosure();
double loopFrequency = loop.loopBegin().loopFrequency();
OptionValues options = loop.loopBegin().getOptions();
int maxDiff = Options.LoopUnswitchTrivial.getValue(options) + (int) (Options.LoopUnswitchFrequencyBoost.getValue(options) * (loopFrequency - 1.0 + phis));
maxDiff = Math.min(maxDiff, Options.LoopUnswitchMaxIncrease.getValue(options));
int remainingGraphSpace = MaximumDesiredSize.getValue(options) - graph.getNodeCount();
maxDiff = Math.min(maxDiff, remainingGraphSpace);
loop.loopBegin().stateAfter().applyToVirtual(stateNodesCount);
int loopTotal = loop.size() - loop.loopBegin().phis().count() - stateNodesCount.count - 1;
int actualDiff = (loopTotal - inBranchTotal);
ControlSplitNode firstSplit = controlSplits.get(0);
if (firstSplit instanceof TypeSwitchNode) {
int copies = firstSplit.successors().count() - 1;
for (Node succ : firstSplit.successors()) {
FixedNode current = (FixedNode) succ;
while (current instanceof FixedWithNextNode) {
current = ((FixedWithNextNode) current).next();
}
if (current instanceof DeoptimizeNode) {
copies--;
}
}
actualDiff = actualDiff * copies;
}
debug.log("shouldUnswitch(%s, %s) : delta=%d (%.2f%% inside of branches), max=%d, f=%.2f, phis=%d -> %b", loop, controlSplits, actualDiff, (double) (inBranchTotal) / loopTotal * 100, maxDiff, loopFrequency, phis, actualDiff <= maxDiff);
if (actualDiff <= maxDiff) {
// check whether we're allowed to unswitch this loop
return loop.canDuplicateLoop();
} else {
return false;
}
}
use of org.graalvm.compiler.nodes.AbstractBeginNode in project graal by oracle.
the class LoopTransformations method unswitch.
public static void unswitch(LoopEx loop, List<ControlSplitNode> controlSplitNodeSet) {
ControlSplitNode firstNode = controlSplitNodeSet.iterator().next();
LoopFragmentWhole originalLoop = loop.whole();
StructuredGraph graph = firstNode.graph();
loop.loopBegin().incrementUnswitches();
// create new control split out of loop
ControlSplitNode newControlSplit = (ControlSplitNode) firstNode.copyWithInputs();
originalLoop.entryPoint().replaceAtPredecessor(newControlSplit);
/*
* The code below assumes that all of the control split nodes have the same successor
* structure, which should have been enforced by findUnswitchable.
*/
Iterator<Position> successors = firstNode.successorPositions().iterator();
assert successors.hasNext();
// original loop is used as first successor
Position firstPosition = successors.next();
AbstractBeginNode originalLoopBegin = BeginNode.begin(originalLoop.entryPoint());
firstPosition.set(newControlSplit, originalLoopBegin);
while (successors.hasNext()) {
Position position = successors.next();
// create a new loop duplicate and connect it.
LoopFragmentWhole duplicateLoop = originalLoop.duplicate();
AbstractBeginNode newBegin = BeginNode.begin(duplicateLoop.entryPoint());
position.set(newControlSplit, newBegin);
// For each cloned ControlSplitNode, simplify the proper path
for (ControlSplitNode controlSplitNode : controlSplitNodeSet) {
ControlSplitNode duplicatedControlSplit = duplicateLoop.getDuplicatedNode(controlSplitNode);
if (duplicatedControlSplit.isAlive()) {
AbstractBeginNode survivingSuccessor = (AbstractBeginNode) position.get(duplicatedControlSplit);
survivingSuccessor.replaceAtUsages(InputType.Guard, newBegin);
graph.removeSplitPropagate(duplicatedControlSplit, survivingSuccessor);
}
}
}
// original loop is simplified last to avoid deleting controlSplitNode too early
for (ControlSplitNode controlSplitNode : controlSplitNodeSet) {
if (controlSplitNode.isAlive()) {
AbstractBeginNode survivingSuccessor = (AbstractBeginNode) firstPosition.get(controlSplitNode);
survivingSuccessor.replaceAtUsages(InputType.Guard, originalLoopBegin);
graph.removeSplitPropagate(controlSplitNode, survivingSuccessor);
}
}
// TODO (gd) probabilities need some amount of fixup.. (probably also in other transforms)
}
use of org.graalvm.compiler.nodes.AbstractBeginNode in project graal by oracle.
the class LoopTransformations method insertPrePostLoops.
// This function splits candidate loops into pre, main and post loops,
// dividing the iteration space to facilitate the majority of iterations
// being executed in a main loop, which will have RCE implemented upon it.
// The initial loop form is constrained to single entry/exit, but can have
// flow. The translation looks like:
//
// @formatter:off
//
// (Simple Loop entry) (Pre Loop Entry)
// | |
// (LoopBeginNode) (LoopBeginNode)
// | |
// (Loop Control Test)<------ ==> (Loop control Test)<------
// / \ \ / \ \
// (Loop Exit) (Loop Body) | (Loop Exit) (Loop Body) |
// | | | | | |
// (continue code) (Loop End) | if (M < length)* (Loop End) |
// \ / / \ \ /
// -----> / | ----->
// / if ( ... )*
// / / \
// / / \
// / / \
// | / (Main Loop Entry)
// | | |
// | | (LoopBeginNode)
// | | |
// | | (Loop Control Test)<------
// | | / \ \
// | | (Loop Exit) (Loop Body) |
// \ \ | | |
// \ \ | (Loop End) |
// \ \ | \ /
// \ \ | ------>
// \ \ |
// (Main Loop Merge)*
// |
// (Post Loop Entry)
// |
// (LoopBeginNode)
// |
// (Loop Control Test)<-----
// / \ \
// (Loop Exit) (Loop Body) |
// | | |
// (continue code) (Loop End) |
// \ /
// ----->
//
// Key: "*" = optional.
// @formatter:on
//
// The value "M" is the maximal value of the loop trip for the original
// loop. The value of "length" is applicable to the number of arrays found
// in the loop but is reduced if some or all of the arrays are known to be
// the same length as "M". The maximum number of tests can be equal to the
// number of arrays in the loop, where multiple instances of an array are
// subsumed into a single test for that arrays length.
//
// If the optional main loop entry tests are absent, the Pre Loop exit
// connects to the Main loops entry and there is no merge hanging off the
// main loops exit to converge flow from said tests. All split use data
// flow is mitigated through phi(s) in the main merge if present and
// passed through the main and post loop phi(s) from the originating pre
// loop with final phi(s) and data flow patched to the "continue code".
// The pre loop is constrained to one iteration for now and will likely
// be updated to produce vector alignment if applicable.
public static LoopBeginNode insertPrePostLoops(LoopEx loop) {
StructuredGraph graph = loop.loopBegin().graph();
graph.getDebug().log("LoopTransformations.insertPrePostLoops %s", loop);
LoopFragmentWhole preLoop = loop.whole();
CountedLoopInfo preCounted = loop.counted();
IfNode preLimit = preCounted.getLimitTest();
assert preLimit != null;
LoopBeginNode preLoopBegin = loop.loopBegin();
InductionVariable preIv = preCounted.getCounter();
LoopExitNode preLoopExitNode = preLoopBegin.getSingleLoopExit();
FixedNode continuationNode = preLoopExitNode.next();
// Each duplication is inserted after the original, ergo create the post loop first
LoopFragmentWhole mainLoop = preLoop.duplicate();
LoopFragmentWhole postLoop = preLoop.duplicate();
preLoopBegin.incrementSplits();
preLoopBegin.incrementSplits();
preLoopBegin.setPreLoop();
graph.getDebug().dump(DebugContext.VERBOSE_LEVEL, graph, "After duplication");
LoopBeginNode mainLoopBegin = mainLoop.getDuplicatedNode(preLoopBegin);
mainLoopBegin.setMainLoop();
LoopBeginNode postLoopBegin = postLoop.getDuplicatedNode(preLoopBegin);
postLoopBegin.setPostLoop();
EndNode postEndNode = getBlockEndAfterLoopExit(postLoopBegin);
AbstractMergeNode postMergeNode = postEndNode.merge();
LoopExitNode postLoopExitNode = postLoopBegin.getSingleLoopExit();
// Update the main loop phi initialization to carry from the pre loop
for (PhiNode prePhiNode : preLoopBegin.phis()) {
PhiNode mainPhiNode = mainLoop.getDuplicatedNode(prePhiNode);
mainPhiNode.setValueAt(0, prePhiNode);
}
EndNode mainEndNode = getBlockEndAfterLoopExit(mainLoopBegin);
AbstractMergeNode mainMergeNode = mainEndNode.merge();
AbstractEndNode postEntryNode = postLoopBegin.forwardEnd();
// In the case of no Bounds tests, we just flow right into the main loop
AbstractBeginNode mainLandingNode = BeginNode.begin(postEntryNode);
LoopExitNode mainLoopExitNode = mainLoopBegin.getSingleLoopExit();
mainLoopExitNode.setNext(mainLandingNode);
preLoopExitNode.setNext(mainLoopBegin.forwardEnd());
// Add and update any phi edges as per merge usage as needed and update usages
processPreLoopPhis(loop, mainLoop, postLoop);
continuationNode.predecessor().clearSuccessors();
postLoopExitNode.setNext(continuationNode);
cleanupMerge(postMergeNode, postLoopExitNode);
cleanupMerge(mainMergeNode, mainLandingNode);
// Change the preLoop to execute one iteration for now
updateMainLoopLimit(preLimit, preIv, mainLoop);
updatePreLoopLimit(preLimit, preIv, preCounted);
preLoopBegin.setLoopFrequency(1);
mainLoopBegin.setLoopFrequency(Math.max(0.0, mainLoopBegin.loopFrequency() - 2));
postLoopBegin.setLoopFrequency(Math.max(0.0, postLoopBegin.loopFrequency() - 1));
// The pre and post loops don't require safepoints at all
for (SafepointNode safepoint : preLoop.nodes().filter(SafepointNode.class)) {
graph.removeFixed(safepoint);
}
for (SafepointNode safepoint : postLoop.nodes().filter(SafepointNode.class)) {
graph.removeFixed(safepoint);
}
graph.getDebug().dump(DebugContext.DETAILED_LEVEL, graph, "InsertPrePostLoops %s", loop);
return mainLoopBegin;
}
use of org.graalvm.compiler.nodes.AbstractBeginNode in project graal by oracle.
the class LoopFragmentInside method placeNewSegmentAndCleanup.
private void placeNewSegmentAndCleanup(LoopEx loop) {
CountedLoopInfo mainCounted = loop.counted();
LoopBeginNode mainLoopBegin = loop.loopBegin();
// Discard the segment entry and its flow, after if merging it into the loop
StructuredGraph graph = mainLoopBegin.graph();
IfNode loopTest = mainCounted.getLimitTest();
IfNode newSegmentTest = getDuplicatedNode(loopTest);
AbstractBeginNode trueSuccessor = loopTest.trueSuccessor();
AbstractBeginNode falseSuccessor = loopTest.falseSuccessor();
FixedNode firstNode;
boolean codeInTrueSide = false;
if (trueSuccessor == mainCounted.getBody()) {
firstNode = trueSuccessor.next();
codeInTrueSide = true;
} else {
assert (falseSuccessor == mainCounted.getBody());
firstNode = falseSuccessor.next();
}
trueSuccessor = newSegmentTest.trueSuccessor();
falseSuccessor = newSegmentTest.falseSuccessor();
for (Node usage : falseSuccessor.anchored().snapshot()) {
usage.replaceFirstInput(falseSuccessor, loopTest.falseSuccessor());
}
for (Node usage : trueSuccessor.anchored().snapshot()) {
usage.replaceFirstInput(trueSuccessor, loopTest.trueSuccessor());
}
AbstractBeginNode startBlockNode;
if (codeInTrueSide) {
startBlockNode = trueSuccessor;
} else {
graph.getDebug().dump(DebugContext.VERBOSE_LEVEL, mainLoopBegin.graph(), "before");
startBlockNode = falseSuccessor;
}
FixedNode lastNode = getBlockEnd(startBlockNode);
LoopEndNode loopEndNode = mainLoopBegin.getSingleLoopEnd();
FixedWithNextNode lastCodeNode = (FixedWithNextNode) loopEndNode.predecessor();
FixedNode newSegmentFirstNode = getDuplicatedNode(firstNode);
FixedWithNextNode newSegmentLastNode = getDuplicatedNode(lastCodeNode);
graph.getDebug().dump(DebugContext.DETAILED_LEVEL, loopEndNode.graph(), "Before placing segment");
if (firstNode instanceof LoopEndNode) {
GraphUtil.killCFG(getDuplicatedNode(mainLoopBegin));
} else {
newSegmentLastNode.clearSuccessors();
startBlockNode.setNext(lastNode);
lastCodeNode.replaceFirstSuccessor(loopEndNode, newSegmentFirstNode);
newSegmentLastNode.replaceFirstSuccessor(lastNode, loopEndNode);
lastCodeNode.setNext(newSegmentFirstNode);
newSegmentLastNode.setNext(loopEndNode);
startBlockNode.clearSuccessors();
lastNode.safeDelete();
Node newSegmentTestStart = newSegmentTest.predecessor();
LogicNode newSegmentIfTest = newSegmentTest.condition();
newSegmentTestStart.clearSuccessors();
newSegmentTest.safeDelete();
newSegmentIfTest.safeDelete();
trueSuccessor.safeDelete();
falseSuccessor.safeDelete();
newSegmentTestStart.safeDelete();
}
graph.getDebug().dump(DebugContext.DETAILED_LEVEL, loopEndNode.graph(), "After placing segment");
}
use of org.graalvm.compiler.nodes.AbstractBeginNode in project graal by oracle.
the class LoopFragmentInside method getDuplicationReplacement.
@Override
@SuppressWarnings("try")
protected DuplicationReplacement getDuplicationReplacement() {
final LoopBeginNode loopBegin = loop().loopBegin();
final StructuredGraph graph = graph();
return new DuplicationReplacement() {
private EconomicMap<Node, Node> seenNode = EconomicMap.create(Equivalence.IDENTITY);
@Override
public Node replacement(Node original) {
try (DebugCloseable position = original.withNodeSourcePosition()) {
if (original == loopBegin) {
Node value = seenNode.get(original);
if (value != null) {
return value;
}
AbstractBeginNode newValue = graph.add(new BeginNode());
seenNode.put(original, newValue);
return newValue;
}
if (original instanceof LoopExitNode && ((LoopExitNode) original).loopBegin() == loopBegin) {
Node value = seenNode.get(original);
if (value != null) {
return value;
}
AbstractBeginNode newValue = graph.add(new BeginNode());
seenNode.put(original, newValue);
return newValue;
}
if (original instanceof LoopEndNode && ((LoopEndNode) original).loopBegin() == loopBegin) {
Node value = seenNode.get(original);
if (value != null) {
return value;
}
EndNode newValue = graph.add(new EndNode());
seenNode.put(original, newValue);
return newValue;
}
return original;
}
}
};
}
Aggregations