use of org.graalvm.compiler.nodes.StartNode in project graal by oracle.
the class InliningUtil method inline.
/**
* Performs an actual inlining, thereby replacing the given invoke with the given
* {@code inlineGraph}.
*
* @param invoke the invoke that will be replaced
* @param inlineGraph the graph that the invoke will be replaced with
* @param receiverNullCheck true if a null check needs to be generated for non-static inlinings,
* false if no such check is required
* @param inlineeMethod the actual method being inlined. Maybe be null for snippets.
* @param reason the reason for inlining, used in tracing
* @param phase the phase that invoked inlining
*/
@SuppressWarnings("try")
public static UnmodifiableEconomicMap<Node, Node> inline(Invoke invoke, StructuredGraph inlineGraph, boolean receiverNullCheck, ResolvedJavaMethod inlineeMethod, String reason, String phase) {
FixedNode invokeNode = invoke.asNode();
StructuredGraph graph = invokeNode.graph();
final NodeInputList<ValueNode> parameters = invoke.callTarget().arguments();
assert inlineGraph.getGuardsStage().ordinal() >= graph.getGuardsStage().ordinal();
assert !invokeNode.graph().isAfterFloatingReadPhase() : "inline isn't handled correctly after floating reads phase";
if (receiverNullCheck && !((MethodCallTargetNode) invoke.callTarget()).isStatic()) {
nonNullReceiver(invoke);
}
ArrayList<Node> nodes = new ArrayList<>(inlineGraph.getNodes().count());
ArrayList<ReturnNode> returnNodes = new ArrayList<>(4);
ArrayList<Invoke> partialIntrinsicExits = new ArrayList<>();
UnwindNode unwindNode = null;
final StartNode entryPointNode = inlineGraph.start();
FixedNode firstCFGNode = entryPointNode.next();
if (firstCFGNode == null) {
throw new IllegalStateException("Inlined graph is in invalid state: " + inlineGraph);
}
for (Node node : inlineGraph.getNodes()) {
if (node == entryPointNode || (node == entryPointNode.stateAfter() && node.usages().count() == 1) || node instanceof ParameterNode) {
// Do nothing.
} else {
nodes.add(node);
if (node instanceof ReturnNode) {
returnNodes.add((ReturnNode) node);
} else if (node instanceof Invoke) {
Invoke invokeInInlineGraph = (Invoke) node;
if (invokeInInlineGraph.bci() == BytecodeFrame.UNKNOWN_BCI) {
ResolvedJavaMethod target1 = inlineeMethod;
ResolvedJavaMethod target2 = invokeInInlineGraph.callTarget().targetMethod();
assert target1.equals(target2) : String.format("invoke in inlined method expected to be partial intrinsic exit (i.e., call to %s), not a call to %s", target1.format("%H.%n(%p)"), target2.format("%H.%n(%p)"));
partialIntrinsicExits.add(invokeInInlineGraph);
}
} else if (node instanceof UnwindNode) {
assert unwindNode == null;
unwindNode = (UnwindNode) node;
}
}
}
final AbstractBeginNode prevBegin = AbstractBeginNode.prevBegin(invokeNode);
DuplicationReplacement localReplacement = new DuplicationReplacement() {
@Override
public Node replacement(Node node) {
if (node instanceof ParameterNode) {
return parameters.get(((ParameterNode) node).index());
} else if (node == entryPointNode) {
return prevBegin;
}
return node;
}
};
assert invokeNode.successors().first() != null : invoke;
assert invokeNode.predecessor() != null;
Mark mark = graph.getMark();
// Instead, attach the inlining log of the child graph to the current inlining log.
EconomicMap<Node, Node> duplicates;
try (InliningLog.UpdateScope scope = graph.getInliningLog().openDefaultUpdateScope()) {
duplicates = graph.addDuplicates(nodes, inlineGraph, inlineGraph.getNodeCount(), localReplacement);
if (scope != null) {
graph.getInliningLog().addDecision(invoke, true, reason, phase, duplicates, inlineGraph.getInliningLog());
}
}
FrameState stateAfter = invoke.stateAfter();
assert stateAfter == null || stateAfter.isAlive();
FrameState stateAtExceptionEdge = null;
if (invoke instanceof InvokeWithExceptionNode) {
InvokeWithExceptionNode invokeWithException = ((InvokeWithExceptionNode) invoke);
if (unwindNode != null) {
ExceptionObjectNode obj = (ExceptionObjectNode) invokeWithException.exceptionEdge();
stateAtExceptionEdge = obj.stateAfter();
}
}
updateSourcePositions(invoke, inlineGraph, duplicates, !Objects.equals(inlineGraph.method(), inlineeMethod), mark);
if (stateAfter != null) {
processFrameStates(invoke, inlineGraph, duplicates, stateAtExceptionEdge, returnNodes.size() > 1);
int callerLockDepth = stateAfter.nestedLockDepth();
if (callerLockDepth != 0) {
for (MonitorIdNode original : inlineGraph.getNodes(MonitorIdNode.TYPE)) {
MonitorIdNode monitor = (MonitorIdNode) duplicates.get(original);
processMonitorId(invoke.stateAfter(), monitor);
}
}
} else {
assert checkContainsOnlyInvalidOrAfterFrameState(duplicates);
}
firstCFGNode = (FixedNode) duplicates.get(firstCFGNode);
for (int i = 0; i < returnNodes.size(); i++) {
returnNodes.set(i, (ReturnNode) duplicates.get(returnNodes.get(i)));
}
for (Invoke exit : partialIntrinsicExits) {
// A partial intrinsic exit must be replaced with a call to
// the intrinsified method.
Invoke dup = (Invoke) duplicates.get(exit.asNode());
if (dup instanceof InvokeNode) {
InvokeNode repl = graph.add(new InvokeNode(invoke.callTarget(), invoke.bci()));
dup.intrinsify(repl.asNode());
} else {
((InvokeWithExceptionNode) dup).replaceWithNewBci(invoke.bci());
}
}
if (unwindNode != null) {
unwindNode = (UnwindNode) duplicates.get(unwindNode);
}
finishInlining(invoke, graph, firstCFGNode, returnNodes, unwindNode, inlineGraph.getAssumptions(), inlineGraph);
GraphUtil.killCFG(invokeNode);
return duplicates;
}
use of org.graalvm.compiler.nodes.StartNode in project graal by oracle.
the class ComputeInliningRelevance method createLoopScope.
/**
* Determines the parent of the given loop and creates a {@link Scope} object for each one. This
* method will call itself recursively if no {@link Scope} for the parent loop exists.
*/
private Scope createLoopScope(LoopBeginNode loopBegin, EconomicMap<LoopBeginNode, Scope> loops, Scope topScope) {
Scope scope = loops.get(loopBegin);
if (scope == null) {
final Scope parent;
// look for the parent scope
FixedNode current = loopBegin.forwardEnd();
while (true) {
if (current.predecessor() == null) {
if (current instanceof LoopBeginNode) {
// if we reach a LoopBeginNode then we're within this loop
parent = createLoopScope((LoopBeginNode) current, loops, topScope);
break;
} else if (current instanceof StartNode) {
// we're within the outermost scope
parent = topScope;
break;
} else {
assert current instanceof MergeNode : current;
// follow any path upwards - it doesn't matter which one
current = ((AbstractMergeNode) current).forwardEndAt(0);
}
} else if (current instanceof LoopExitNode) {
// if we reach a loop exit then we follow this loop and have the same parent
parent = createLoopScope(((LoopExitNode) current).loopBegin(), loops, topScope).parent;
break;
} else {
current = (FixedNode) current.predecessor();
}
}
scope = new Scope(loopBegin, parent);
loops.put(loopBegin, scope);
}
return scope;
}
use of org.graalvm.compiler.nodes.StartNode in project graal by oracle.
the class FixedNodeProbabilityCache method applyAsDouble.
/**
* <p>
* Given a {@link FixedNode} this method finds the most immediate {@link AbstractBeginNode}
* preceding it that either:
* <ul>
* <li>has no predecessor (ie, the begin-node is a merge, in particular a loop-begin, or the
* start-node)</li>
* <li>has a control-split predecessor</li>
* </ul>
* </p>
*
* <p>
* The thus found {@link AbstractBeginNode} is equi-probable with the {@link FixedNode} it was
* obtained from. When computed for the first time (afterwards a cache lookup returns it) that
* probability is computed as follows, again depending on the begin-node's predecessor:
* <ul>
* <li>No predecessor. In this case the begin-node is either:</li>
* <ul>
* <li>a merge-node, whose probability adds up those of its forward-ends</li>
* <li>a loop-begin, with probability as above multiplied by the loop-frequency</li>
* </ul>
* <li>Control-split predecessor: probability of the branch times that of the control-split</li>
* </ul>
* </p>
*
* <p>
* As an exception to all the above, a probability of 1 is assumed for a {@link FixedNode} that
* appears to be dead-code (ie, lacks a predecessor).
* </p>
*/
@Override
public double applyAsDouble(FixedNode node) {
assert node != null;
computeNodeProbabilityCounter.increment(node.getDebug());
FixedNode current = findBegin(node);
if (current == null) {
// this should only appear for dead code
return 1D;
}
assert current instanceof AbstractBeginNode;
Double cachedValue = cache.get(current);
if (cachedValue != null) {
return cachedValue;
}
double probability = 0.0;
if (current.predecessor() == null) {
if (current instanceof AbstractMergeNode) {
probability = handleMerge(current, probability);
} else {
assert current instanceof StartNode;
probability = 1D;
}
} else {
ControlSplitNode split = (ControlSplitNode) current.predecessor();
probability = multiplyProbabilities(split.probability((AbstractBeginNode) current), applyAsDouble(split));
}
assert !Double.isNaN(probability) && !Double.isInfinite(probability) : current + " " + probability;
cache.put(current, probability);
return probability;
}
Aggregations