use of org.kie.kogito.explainability.model.PredictionInput in project kogito-apps by kiegroup.
the class CounterfactualScoreCalculatorTest method testGoalSizeSmaller.
/**
* Using a smaller number of features in the goals (1) than the model's output (2) should
* throw an {@link IllegalArgumentException} with the appropriate message.
*/
@Test
void testGoalSizeSmaller() throws ExecutionException, InterruptedException {
final CounterFactualScoreCalculator scoreCalculator = new CounterFactualScoreCalculator();
PredictionProvider model = TestUtils.getFeatureSkipModel(0);
List<Feature> features = new ArrayList<>();
List<FeatureDomain> featureDomains = new ArrayList<>();
List<Boolean> constraints = new ArrayList<>();
// f-1
features.add(FeatureFactory.newNumericalFeature("f-1", 1.0));
featureDomains.add(NumericalFeatureDomain.create(0.0, 10.0));
constraints.add(false);
// f-2
features.add(FeatureFactory.newNumericalFeature("f-2", 2.0));
featureDomains.add(NumericalFeatureDomain.create(0.0, 10.0));
constraints.add(false);
// f-3
features.add(FeatureFactory.newBooleanFeature("f-3", true));
featureDomains.add(EmptyFeatureDomain.create());
constraints.add(false);
PredictionInput input = new PredictionInput(features);
PredictionFeatureDomain domains = new PredictionFeatureDomain(featureDomains);
List<CounterfactualEntity> entities = CounterfactualEntityFactory.createEntities(input);
List<Output> goal = new ArrayList<>();
goal.add(new Output("f-2", Type.NUMBER, new Value(2.0), 0.0));
List<PredictionOutput> predictionOutputs = model.predictAsync(List.of(input)).get();
assertEquals(1, goal.size());
// A single prediction is expected
assertEquals(1, predictionOutputs.size());
// Single prediction with two features
assertEquals(2, predictionOutputs.get(0).getOutputs().size());
final CounterfactualSolution solution = new CounterfactualSolution(entities, features, model, goal, UUID.randomUUID(), UUID.randomUUID(), 0.0);
IllegalArgumentException exception = assertThrows(IllegalArgumentException.class, () -> {
scoreCalculator.calculateScore(solution);
});
assertEquals("Prediction size must be equal to goal size", exception.getMessage());
}
use of org.kie.kogito.explainability.model.PredictionInput in project kogito-apps by kiegroup.
the class DataUtils method linearizeInputs.
/**
* Transform a list of prediction inputs into another list of the same prediction inputs but having linearized features.
*
* @param predictionInputs a list of prediction inputs
* @return a list of prediction inputs with linearized features
*/
public static List<PredictionInput> linearizeInputs(List<PredictionInput> predictionInputs) {
List<PredictionInput> newInputs = new LinkedList<>();
for (PredictionInput predictionInput : predictionInputs) {
List<Feature> originalFeatures = predictionInput.getFeatures();
List<Feature> flattenedFeatures = getLinearizedFeatures(originalFeatures);
newInputs.add(new PredictionInput(flattenedFeatures));
}
return newInputs;
}
use of org.kie.kogito.explainability.model.PredictionInput in project kogito-apps by kiegroup.
the class DataUtils method readCSV.
/**
* Read a CSV file into a {@link DataDistribution} object.
*
* @param file the path to the CSV file
* @param schema an ordered list of {@link Type}s as the 'schema', used to determine
* the {@link Type} of each feature / column
* @return the parsed CSV as a {@link DataDistribution}
* @throws IOException when failing at reading the CSV file
* @throws MalformedInputException if any record in CSV has different size with respect to the specified schema
*/
public static DataDistribution readCSV(Path file, List<Type> schema) throws IOException {
List<PredictionInput> inputs = new ArrayList<>();
try (BufferedReader reader = Files.newBufferedReader(file)) {
Iterable<CSVRecord> records = CSVFormat.RFC4180.withFirstRecordAsHeader().parse(reader);
for (CSVRecord record : records) {
int size = record.size();
if (schema.size() == size) {
List<Feature> features = new ArrayList<>();
for (int i = 0; i < size; i++) {
String s = record.get(i);
Type type = schema.get(i);
features.add(new Feature(record.getParser().getHeaderNames().get(i), type, new Value(s)));
}
inputs.add(new PredictionInput(features));
} else {
throw new MalformedInputException(size);
}
}
}
return new PredictionInputsDataDistribution(inputs);
}
use of org.kie.kogito.explainability.model.PredictionInput in project kogito-apps by kiegroup.
the class ExplainabilityMetrics method getLocalSaliencyRecall.
/**
* Evaluate the recall of a local saliency explainer on a given model.
* Get the predictions having outputs with the highest score for the given decision and pair them with predictions
* whose outputs have the lowest score for the same decision.
* Get the top k (most important) features (according to the saliency) for the most important outputs and
* "paste" them on each paired input corresponding to an output with low score (for the target decision).
* Perform prediction on the "masked" input, if the output on the masked input is equals to the output for the
* input the mask features were take from, that's considered a true positive, otherwise it's a false positive.
* see Section 3.2.1 of https://openreview.net/attachment?id=B1xBAA4FwH&name=original_pdf
*
* @param outputName decision to evaluate recall for
* @param predictionProvider the prediction provider to test
* @param localExplainer the explainer to evaluate
* @param dataDistribution the data distribution used to obtain inputs for evaluation
* @param k the no. of features to extract
* @param chunkSize the size of the chunk of predictions to use for evaluation
* @return the saliency recall
*/
public static double getLocalSaliencyRecall(String outputName, PredictionProvider predictionProvider, LocalExplainer<Map<String, Saliency>> localExplainer, DataDistribution dataDistribution, int k, int chunkSize) throws InterruptedException, ExecutionException, TimeoutException {
// get all samples from the data distribution
List<Prediction> sorted = DataUtils.getScoreSortedPredictions(outputName, predictionProvider, dataDistribution);
// get the top and bottom 'chunkSize' predictions
List<Prediction> topChunk = new ArrayList<>(sorted.subList(0, chunkSize));
List<Prediction> bottomChunk = new ArrayList<>(sorted.subList(sorted.size() - chunkSize, sorted.size()));
double truePositives = 0;
double falseNegatives = 0;
int currentChunk = 0;
// input, then feed the model with this masked input and check the output is equals to the top scored one.
for (Prediction prediction : topChunk) {
Optional<Output> optionalOutput = prediction.getOutput().getByName(outputName);
if (optionalOutput.isPresent()) {
Output output = optionalOutput.get();
Map<String, Saliency> stringSaliencyMap = localExplainer.explainAsync(prediction, predictionProvider).get(Config.DEFAULT_ASYNC_TIMEOUT, Config.DEFAULT_ASYNC_TIMEUNIT);
if (stringSaliencyMap.containsKey(outputName)) {
Saliency saliency = stringSaliencyMap.get(outputName);
List<FeatureImportance> topFeatures = saliency.getPerFeatureImportance().stream().sorted((f1, f2) -> Double.compare(f2.getScore(), f1.getScore())).limit(k).collect(Collectors.toList());
PredictionInput input = bottomChunk.get(currentChunk).getInput();
PredictionInput maskedInput = maskInput(topFeatures, input);
List<PredictionOutput> predictionOutputList = predictionProvider.predictAsync(List.of(maskedInput)).get(Config.DEFAULT_ASYNC_TIMEOUT, Config.DEFAULT_ASYNC_TIMEUNIT);
if (!predictionOutputList.isEmpty()) {
PredictionOutput predictionOutput = predictionOutputList.get(0);
Optional<Output> optionalNewOutput = predictionOutput.getByName(outputName);
if (optionalNewOutput.isPresent()) {
Output newOutput = optionalOutput.get();
if (output.getValue().equals(newOutput.getValue())) {
truePositives++;
} else {
falseNegatives++;
}
}
}
currentChunk++;
}
}
}
if ((truePositives + falseNegatives) > 0) {
return truePositives / (truePositives + falseNegatives);
} else {
// if topChunk is empty or the target output (by name) is not an output of the model.
return Double.NaN;
}
}
use of org.kie.kogito.explainability.model.PredictionInput in project kogito-apps by kiegroup.
the class ExplainabilityMetrics method getLocalSaliencyPrecision.
/**
* Evaluate the precision of a local saliency explainer on a given model.
* Get the predictions having outputs with the lowest score for the given decision and pair them with predictions
* whose outputs have the highest score for the same decision.
* Get the bottom k (less important) features (according to the saliency) for the less important outputs and
* "paste" them on each paired input corresponding to an output with high score (for the target decision).
* Perform prediction on the "masked" input, if the output changes that's considered a false negative, otherwise
* it's a true positive.
* see Section 3.2.1 of https://openreview.net/attachment?id=B1xBAA4FwH&name=original_pdf
*
* @param outputName decision to evaluate recall for
* @param predictionProvider the prediction provider to test
* @param localExplainer the explainer to evaluate
* @param dataDistribution the data distribution used to obtain inputs for evaluation
* @param k the no. of features to extract
* @param chunkSize the size of the chunk of predictions to use for evaluation
* @return the saliency precision
*/
public static double getLocalSaliencyPrecision(String outputName, PredictionProvider predictionProvider, LocalExplainer<Map<String, Saliency>> localExplainer, DataDistribution dataDistribution, int k, int chunkSize) throws InterruptedException, ExecutionException, TimeoutException {
List<Prediction> sorted = DataUtils.getScoreSortedPredictions(outputName, predictionProvider, dataDistribution);
// get the top and bottom 'chunkSize' predictions
List<Prediction> topChunk = new ArrayList<>(sorted.subList(0, chunkSize));
List<Prediction> bottomChunk = new ArrayList<>(sorted.subList(sorted.size() - chunkSize, sorted.size()));
double truePositives = 0;
double falsePositives = 0;
int currentChunk = 0;
for (Prediction prediction : bottomChunk) {
Map<String, Saliency> stringSaliencyMap = localExplainer.explainAsync(prediction, predictionProvider).get(Config.DEFAULT_ASYNC_TIMEOUT, Config.DEFAULT_ASYNC_TIMEUNIT);
if (stringSaliencyMap.containsKey(outputName)) {
Saliency saliency = stringSaliencyMap.get(outputName);
List<FeatureImportance> topFeatures = saliency.getPerFeatureImportance().stream().sorted(Comparator.comparingDouble(FeatureImportance::getScore)).limit(k).collect(Collectors.toList());
Prediction topPrediction = topChunk.get(currentChunk);
PredictionInput input = topPrediction.getInput();
PredictionInput maskedInput = maskInput(topFeatures, input);
List<PredictionOutput> predictionOutputList = predictionProvider.predictAsync(List.of(maskedInput)).get(Config.DEFAULT_ASYNC_TIMEOUT, Config.DEFAULT_ASYNC_TIMEUNIT);
if (!predictionOutputList.isEmpty()) {
PredictionOutput predictionOutput = predictionOutputList.get(0);
Optional<Output> newOptionalOutput = predictionOutput.getByName(outputName);
if (newOptionalOutput.isPresent()) {
Output newOutput = newOptionalOutput.get();
Optional<Output> optionalOutput = topPrediction.getOutput().getByName(outputName);
if (optionalOutput.isPresent()) {
Output output = optionalOutput.get();
if (output.getValue().equals(newOutput.getValue())) {
truePositives++;
} else {
falsePositives++;
}
}
}
}
currentChunk++;
}
}
if ((truePositives + falsePositives) > 0) {
return truePositives / (truePositives + falsePositives);
} else {
// if bottomChunk is empty or the target output (by name) is not an output of the model.
return Double.NaN;
}
}
Aggregations