use of org.matheclipse.core.polynomials.ExprPolynomialRing in project symja_android_library by axkr.
the class Resultant method evaluate.
@Override
public IExpr evaluate(final IAST ast, EvalEngine engine) {
Validate.checkSize(ast, 4);
// TODO allow multinomials
IExpr arg3 = Validate.checkSymbolType(ast, 3);
ISymbol x = (ISymbol) arg3;
IExpr a = F.evalExpandAll(ast.arg1());
IExpr b = F.evalExpandAll(ast.arg2());
ExprPolynomialRing ring = new ExprPolynomialRing(F.List(x));
try {
// check if a is a polynomial otherwise check ArithmeticException,
// ClassCastException
ring.create(a);
} catch (RuntimeException ex) {
throw new WrongArgumentType(ast, a, 1, "Polynomial expected!");
}
try {
// check if b is a polynomial otherwise check ArithmeticException,
// ClassCastException
ring.create(b);
return F.Together(resultant(a, b, x, engine));
} catch (RuntimeException ex) {
throw new WrongArgumentType(ast, b, 2, "Polynomial expected!");
}
}
use of org.matheclipse.core.polynomials.ExprPolynomialRing in project symja_android_library by axkr.
the class Algebra method cancelGCD.
/**
* Calculate the 3 elements result array
*
* <pre>
* [
* commonFactor,
* numeratorPolynomial.divide(gcd(numeratorPolynomial, denominatorPolynomial)),
* denominatorPolynomial.divide(gcd(numeratorPolynomial, denominatorPolynomial))
* ]
* </pre>
*
* for the given expressions <code>numeratorPolynomial</code> and <code>denominatorPolynomial</code>.
*
*
* @param numeratorPolynomial
* a <code>BigRational</code> polynomial which could be converted to JAS polynomial
* @param denominatorPolynomial
* a <code>BigRational</code> polynomial which could be converted to JAS polynomial
* @return <code>null</code> if the expressions couldn't be converted to JAS polynomials or gcd equals 1
* @throws JASConversionException
*/
public static IExpr[] cancelGCD(IExpr numeratorPolynomial, IExpr denominatorPolynomial) throws JASConversionException {
try {
if (denominatorPolynomial.isInteger() && numeratorPolynomial.isPlus()) {
IExpr[] result = Cancel.cancelPlusIntegerGCD((IAST) numeratorPolynomial, (IInteger) denominatorPolynomial);
if (result != null) {
return result;
}
}
VariablesSet eVar = new VariablesSet(numeratorPolynomial);
eVar.addVarList(denominatorPolynomial);
if (eVar.size() == 0) {
return null;
}
IAST vars = eVar.getVarList();
ExprPolynomialRing ring = new ExprPolynomialRing(vars);
ExprPolynomial pol1 = ring.create(numeratorPolynomial);
ExprPolynomial pol2 = ring.create(denominatorPolynomial);
ASTRange r = new ASTRange(eVar.getVarList(), 1);
JASIExpr jas = new JASIExpr(r, true);
GenPolynomial<IExpr> p1 = jas.expr2IExprJAS(pol1);
GenPolynomial<IExpr> p2 = jas.expr2IExprJAS(pol2);
GreatestCommonDivisor<IExpr> engine;
engine = GCDFactory.getImplementation(ExprRingFactory.CONST);
GenPolynomial<IExpr> gcd = engine.gcd(p1, p2);
IExpr[] result = new IExpr[3];
if (gcd.isONE()) {
result[0] = jas.exprPoly2Expr(gcd);
result[1] = jas.exprPoly2Expr(p1);
result[2] = jas.exprPoly2Expr(p2);
} else {
result[0] = F.C1;
result[1] = F.eval(jas.exprPoly2Expr(p1.divide(gcd)));
result[2] = F.eval(jas.exprPoly2Expr(p2.divide(gcd)));
}
return result;
} catch (RuntimeException e) {
if (Config.DEBUG) {
e.printStackTrace();
}
}
return null;
}
use of org.matheclipse.core.polynomials.ExprPolynomialRing in project symja_android_library by axkr.
the class Coefficient method evaluate.
@Override
public IExpr evaluate(final IAST ast, EvalEngine engine) {
Validate.checkRange(ast, 3, 4);
IExpr arg2 = ast.arg2();
// list of variable expressions extracted from the second argument
IAST listOfVariables = null;
// array of corresponding exponents for the list of variables
long[] exponents = null;
if (arg2.isTimes()) {
// Times(x, y^a,...)
IAST arg2AST = (IAST) arg2;
VariablesSet eVar = new VariablesSet(arg2AST);
listOfVariables = eVar.getVarList();
exponents = new long[listOfVariables.size() - 1];
for (int i = 0; i < exponents.length; i++) {
exponents[i] = 0L;
}
for (int i = 1; i < arg2AST.size(); i++) {
long value = 1L;
IExpr a1 = arg2AST.get(i);
if (arg2AST.get(i).isPower() && arg2AST.get(i).getAt(2).isInteger()) {
a1 = arg2AST.get(i).getAt(1);
IInteger ii = (IInteger) arg2AST.get(i).getAt(2);
try {
value = ii.toLong();
} catch (ArithmeticException ae) {
return F.NIL;
}
}
if (!setExponent(listOfVariables, a1, exponents, value)) {
return F.NIL;
}
}
} else {
listOfVariables = F.List();
listOfVariables.append(arg2);
exponents = new long[1];
exponents[0] = 1;
}
try {
long n = 1;
if (ast.isAST3()) {
if (ast.arg3().isNegativeInfinity()) {
return F.C0;
}
n = Validate.checkLongType(ast.arg3());
for (int i = 0; i < exponents.length; i++) {
exponents[i] *= n;
}
}
ExpVectorLong expArr = new ExpVectorLong(exponents);
IExpr expr = F.evalExpandAll(ast.arg1());
ExprPolynomialRing ring = new ExprPolynomialRing(ExprRingFactory.CONST, listOfVariables, listOfVariables.size() - 1);
ExprPolynomial poly = ring.create(expr, true, true);
return poly.coefficient(expArr);
} catch (RuntimeException ae) {
if (Config.DEBUG) {
ae.printStackTrace();
}
return F.C0;
}
}
use of org.matheclipse.core.polynomials.ExprPolynomialRing in project symja_android_library by axkr.
the class Roots method rootsOfQuadraticExprPolynomial.
/**
* Solve a polynomial with degree <= 2.
*
* @param expr
* @param varList
* @return <code>F.NIL</code> if no evaluation was possible.
*/
private static IAST rootsOfQuadraticExprPolynomial(final IExpr expr, IAST varList) {
IAST result = F.NIL;
try {
// try to generate a common expression polynomial
ExprPolynomialRing ring = new ExprPolynomialRing(ExprRingFactory.CONST, varList);
ExprPolynomial ePoly = ring.create(expr, false, false);
ePoly = ePoly.multiplyByMinimumNegativeExponents();
result = rootsOfQuadraticPolynomial(ePoly);
if (result.isPresent() && expr.isNumericMode()) {
for (int i = 1; i < result.size(); i++) {
result.set(i, F.chopExpr(result.get(i), Config.DEFAULT_ROOTS_CHOP_DELTA));
}
}
} catch (JASConversionException e2) {
if (Config.SHOW_STACKTRACE) {
e2.printStackTrace();
}
}
return result;
}
use of org.matheclipse.core.polynomials.ExprPolynomialRing in project symja_android_library by axkr.
the class Roots method rootsOfExprPolynomial.
private static IAST rootsOfExprPolynomial(final IExpr expr, IAST varList, boolean rootsOfQuartic) {
IAST result = F.NIL;
try {
// try to generate a common expression polynomial
ExprPolynomialRing ring = new ExprPolynomialRing(ExprRingFactory.CONST, varList);
ExprPolynomial ePoly = ring.create(expr, false, false);
ePoly = ePoly.multiplyByMinimumNegativeExponents();
if (ePoly.degree(0) >= 3) {
result = unitPolynomial(ePoly.degree(0), ePoly);
if (result.isPresent()) {
result = QuarticSolver.createSet(result);
return result;
}
}
if (!rootsOfQuartic && ePoly.degree(0) > 2) {
return F.NIL;
}
result = rootsOfQuarticPolynomial(ePoly);
if (result.isPresent()) {
if (expr.isNumericMode()) {
for (int i = 1; i < result.size(); i++) {
result.set(i, F.chopExpr(result.get(i), Config.DEFAULT_ROOTS_CHOP_DELTA));
}
}
return result;
}
} catch (JASConversionException e2) {
if (Config.SHOW_STACKTRACE) {
e2.printStackTrace();
}
}
return F.NIL;
}
Aggregations