use of org.nd4j.jita.allocator.impl.AtomicAllocator in project nd4j by deeplearning4j.
the class JCublasNDArrayFactory method accumulate.
public INDArray accumulate(INDArray target, INDArray... arrays) {
if (arrays == null || arrays.length == 0)
throw new RuntimeException("Input arrays are missing");
if (arrays.length == 1)
return target.assign(arrays[0]);
// we do averaging on GPU only if ALL devices have p2p links
if (CudaEnvironment.getInstance().getConfiguration().isCrossDeviceAccessAllowed() && nativeOps.isP2PAvailable()) {
Nd4j.getExecutioner().push();
long len = target.lengthLong();
AtomicAllocator allocator = AtomicAllocator.getInstance();
CudaContext context = allocator.getFlowController().prepareAction(target, arrays);
PointerPointer extras = new // not used
PointerPointer(// not used
null, context.getOldStream(), allocator.getDeviceIdPointer(), new CudaPointer(0));
Pointer z = AtomicAllocator.getInstance().getPointer(target, context);
long[] xPointers = new long[arrays.length];
for (int i = 0; i < arrays.length; i++) {
if (arrays[i].elementWiseStride() != 1)
throw new ND4JIllegalStateException("Native averaging is applicable only to continuous INDArrays");
if (arrays[i].lengthLong() != len)
throw new ND4JIllegalStateException("All arrays should have equal length for averaging");
AllocationPoint point = allocator.getAllocationPoint(arrays[i]);
xPointers[i] = point.getPointers().getDevicePointer().address();
point.tickDeviceWrite();
}
CudaDoubleDataBuffer tempX = new CudaDoubleDataBuffer(arrays.length);
allocator.memcpyBlocking(tempX, new LongPointer(xPointers), xPointers.length * 8, 0);
PointerPointer x = new PointerPointer(AtomicAllocator.getInstance().getPointer(tempX, context));
if (target.data().dataType() == DataBuffer.Type.DOUBLE) {
nativeOps.accumulateDouble(extras, x, (DoublePointer) z, arrays.length, len);
} else if (target.data().dataType() == DataBuffer.Type.FLOAT) {
nativeOps.accumulateFloat(extras, x, (FloatPointer) z, arrays.length, len);
} else {
nativeOps.accumulateHalf(extras, x, (ShortPointer) z, arrays.length, len);
}
allocator.getFlowController().registerAction(context, target, arrays);
tempX.address();
return target;
} else {
long len = target.lengthLong();
Nd4j.getExecutioner().commit();
CudaContext context = (CudaContext) AtomicAllocator.getInstance().getDeviceContext().getContext();
PointerPointer dataPointers = new PointerPointer(arrays.length);
PointerPointer extras = new // not used
PointerPointer(// not used
null, context.getOldStream(), AtomicAllocator.getInstance().getDeviceIdPointer(), new CudaPointer(1));
for (int i = 0; i < arrays.length; i++) {
Nd4j.getCompressor().autoDecompress(arrays[i]);
if (arrays[i].elementWiseStride() != 1)
throw new ND4JIllegalStateException("Native averaging is applicable only to continuous INDArrays");
if (arrays[i].lengthLong() != len)
throw new ND4JIllegalStateException("All arrays should have equal length for averaging");
dataPointers.put(i, AtomicAllocator.getInstance().getHostPointer(arrays[i]));
}
if (target.data().dataType() == DataBuffer.Type.DOUBLE) {
nativeOps.accumulateDouble(extras, dataPointers, (DoublePointer) AtomicAllocator.getInstance().getHostPointer(target), arrays.length, len);
} else if (target.data().dataType() == DataBuffer.Type.FLOAT) {
nativeOps.accumulateFloat(extras, dataPointers, (FloatPointer) AtomicAllocator.getInstance().getHostPointer(target), arrays.length, len);
} else {
nativeOps.accumulateHalf(extras, dataPointers, (ShortPointer) AtomicAllocator.getInstance().getHostPointer(target), arrays.length, len);
}
AtomicAllocator.getInstance().getAllocationPoint(target).tickHostWrite();
return target;
}
}
use of org.nd4j.jita.allocator.impl.AtomicAllocator in project nd4j by deeplearning4j.
the class JCublasNDArrayFactory method pullRows.
/**
* This method produces concatenated array, that consist from tensors, fetched from source array, against some dimension and specified indexes
*
* @param source source tensor
* @param sourceDimension dimension of source tensor
* @param indexes indexes from source array
* @return
*/
@Override
public INDArray pullRows(INDArray source, int sourceDimension, int[] indexes, char order) {
if (Nd4j.getExecutioner() instanceof GridExecutioner)
((GridExecutioner) Nd4j.getExecutioner()).flushQueue();
if (indexes == null || indexes.length < 1)
throw new IllegalStateException("Indexes can't be null or zero-length");
int[] shape = null;
if (sourceDimension == 1)
shape = new int[] { indexes.length, source.shape()[sourceDimension] };
else if (sourceDimension == 0)
shape = new int[] { source.shape()[sourceDimension], indexes.length };
else
throw new UnsupportedOperationException("2D input is expected");
INDArray ret = Nd4j.createUninitialized(shape, order);
AtomicAllocator allocator = AtomicAllocator.getInstance();
CudaContext context = allocator.getFlowController().prepareAction(ret, source);
Pointer x = AtomicAllocator.getInstance().getPointer(source, context);
Pointer xShape = AtomicAllocator.getInstance().getPointer(source.shapeInfoDataBuffer(), context);
Pointer z = AtomicAllocator.getInstance().getPointer(ret, context);
Pointer zShape = AtomicAllocator.getInstance().getPointer(ret.shapeInfoDataBuffer(), context);
PointerPointer extras = new PointerPointer(AddressRetriever.retrieveHostPointer(ret.shapeInfoDataBuffer()), context.getOldStream(), allocator.getDeviceIdPointer());
CudaIntDataBuffer tempIndexes = new CudaIntDataBuffer(indexes.length);
AtomicAllocator.getInstance().memcpyBlocking(tempIndexes, new IntPointer(indexes), indexes.length * 4, 0);
Pointer pIndex = AtomicAllocator.getInstance().getPointer(tempIndexes, context);
TADManager tadManager = Nd4j.getExecutioner().getTADManager();
Pair<DataBuffer, DataBuffer> tadBuffers = tadManager.getTADOnlyShapeInfo(source, new int[] { sourceDimension });
Pair<DataBuffer, DataBuffer> zTadBuffers = tadManager.getTADOnlyShapeInfo(ret, new int[] { sourceDimension });
Pointer tadShapeInfo = AtomicAllocator.getInstance().getPointer(tadBuffers.getFirst(), context);
Pointer zTadShapeInfo = AtomicAllocator.getInstance().getPointer(zTadBuffers.getFirst(), context);
DataBuffer offsets = tadBuffers.getSecond();
Pointer tadOffsets = AtomicAllocator.getInstance().getPointer(offsets, context);
Pointer zTadOffsets = AtomicAllocator.getInstance().getPointer(zTadBuffers.getSecond(), context);
if (ret.data().dataType() == DataBuffer.Type.DOUBLE) {
nativeOps.pullRowsDouble(extras, (DoublePointer) x, (IntPointer) xShape, (DoublePointer) z, (IntPointer) zShape, indexes.length, (IntPointer) pIndex, (IntPointer) tadShapeInfo, new LongPointerWrapper(tadOffsets), (IntPointer) zTadShapeInfo, new LongPointerWrapper(zTadOffsets));
} else if (ret.data().dataType() == DataBuffer.Type.FLOAT) {
nativeOps.pullRowsFloat(extras, (FloatPointer) x, (IntPointer) xShape, (FloatPointer) z, (IntPointer) zShape, indexes.length, (IntPointer) pIndex, (IntPointer) tadShapeInfo, new LongPointerWrapper(tadOffsets), (IntPointer) zTadShapeInfo, new LongPointerWrapper(zTadOffsets));
} else {
nativeOps.pullRowsHalf(extras, (ShortPointer) x, (IntPointer) xShape, (ShortPointer) z, (IntPointer) zShape, indexes.length, (IntPointer) pIndex, (IntPointer) tadShapeInfo, new LongPointerWrapper(tadOffsets), (IntPointer) zTadShapeInfo, new LongPointerWrapper(zTadOffsets));
}
allocator.registerAction(context, ret, source);
return ret;
}
use of org.nd4j.jita.allocator.impl.AtomicAllocator in project nd4j by deeplearning4j.
the class JCublasNDArrayFactory method specialConcat.
@Override
public INDArray specialConcat(int dimension, INDArray... toConcat) {
if (toConcat.length == 1)
return toConcat[0];
if (Nd4j.getExecutioner() instanceof GridExecutioner)
((GridExecutioner) Nd4j.getExecutioner()).flushQueue();
PointerPointer shapeInfoPointers = new PointerPointer(toConcat.length);
PointerPointer dataPointers = new PointerPointer(toConcat.length);
AtomicAllocator allocator = AtomicAllocator.getInstance();
CudaContext context = (CudaContext) allocator.getDeviceContext().getContext();
int sumAlongDim = 0;
int[] outputShape = ArrayUtil.copy(toConcat[0].shape());
for (int i = 0; i < toConcat.length; i++) {
if (toConcat[i].isCompressed())
Nd4j.getCompressor().decompressi(toConcat[i]);
allocator.synchronizeHostData(toConcat[i]);
shapeInfoPointers.put(i, allocator.getHostPointer(toConcat[i].shapeInfoDataBuffer()));
dataPointers.put(i, allocator.getHostPointer(toConcat[i].data()));
sumAlongDim += toConcat[i].size(dimension);
for (int j = 0; j < toConcat[i].rank(); j++) if (j != dimension && toConcat[i].size(j) != outputShape[j]) {
throw new IllegalArgumentException("Illegal concatenation at array " + i + " and shape element " + j);
}
}
outputShape[dimension] = sumAlongDim;
PointerPointer dummy = new PointerPointer(new Pointer[] { null });
INDArray ret = Nd4j.createUninitialized(outputShape, Nd4j.order());
if (ret.data().dataType() == DataBuffer.Type.DOUBLE) {
nativeOps.specialConcatDouble(dummy, dimension, toConcat.length, dataPointers, shapeInfoPointers, (DoublePointer) ret.data().addressPointer(), (IntPointer) ret.shapeInfoDataBuffer().addressPointer(), new PointerPointer(new Pointer[] { null }), new PointerPointer(new Pointer[] { null }));
} else if (ret.data().dataType() == DataBuffer.Type.FLOAT) {
nativeOps.specialConcatFloat(dummy, dimension, toConcat.length, dataPointers, shapeInfoPointers, (FloatPointer) ret.data().addressPointer(), (IntPointer) ret.shapeInfoDataBuffer().addressPointer(), new PointerPointer(new Pointer[] { null }), new PointerPointer(new Pointer[] { null }));
} else if (ret.data().dataType() == DataBuffer.Type.HALF) {
nativeOps.specialConcatHalf(dummy, dimension, toConcat.length, dataPointers, shapeInfoPointers, (ShortPointer) ret.data().addressPointer(), (IntPointer) ret.shapeInfoDataBuffer().addressPointer(), new PointerPointer(new Pointer[] { null }), new PointerPointer(new Pointer[] { null }));
} else {
throw new ND4JIllegalStateException("Unknown dataType: " + ret.data().dataType());
}
AllocationPoint point = allocator.getAllocationPoint(ret);
nativeOps.memcpyAsync(point.getDevicePointer(), point.getHostPointer(), ret.lengthLong() * Nd4j.sizeOfDataType(ret.data().dataType()), CudaConstants.cudaMemcpyHostToDevice, context.getSpecialStream());
context.getSpecialStream().synchronize();
point.tickHostRead();
point.tickDeviceWrite();
return ret;
}
use of org.nd4j.jita.allocator.impl.AtomicAllocator in project nd4j by deeplearning4j.
the class JCublasNDArrayFactory method shuffle.
/**
* Symmetric in place shuffle of an ndarray
* along a specified set of dimensions. Each array in list should have it's own dimension at the same index of dimensions array
*
* @param arrays the ndarrays to shuffle
* @param dimensions the dimensions to do the shuffle
* @return
*/
@Override
public void shuffle(List<INDArray> arrays, Random rnd, List<int[]> dimensions) {
// no dimension - no shuffle
if (dimensions == null || dimensions.size() == 0)
throw new RuntimeException("Dimension can't be null or 0-length");
if (arrays == null || arrays.size() == 0)
throw new RuntimeException("No input arrays provided");
if (dimensions.size() > 1 && arrays.size() != dimensions.size())
throw new IllegalStateException("Number of dimensions do not match number of arrays to shuffle");
Nd4j.getExecutioner().push();
// first we build TAD for input array and dimensions
AtomicAllocator allocator = AtomicAllocator.getInstance();
CudaContext context = null;
for (int x = 0; x < arrays.size(); x++) {
context = allocator.getFlowController().prepareAction(arrays.get(x));
}
int tadLength = 1;
for (int i = 0; i < dimensions.get(0).length; i++) {
tadLength *= arrays.get(0).shape()[dimensions.get(0)[i]];
}
int numTads = arrays.get(0).length() / tadLength;
int[] map = ArrayUtil.buildInterleavedVector(rnd, numTads);
CudaIntDataBuffer shuffle = new CudaIntDataBuffer(map);
Pointer shuffleMap = allocator.getPointer(shuffle, context);
PointerPointer extras = new // not used
PointerPointer(// not used
null, context.getOldStream(), allocator.getDeviceIdPointer());
long[] xPointers = new long[arrays.size()];
long[] xShapes = new long[arrays.size()];
long[] tadShapes = new long[arrays.size()];
long[] tadOffsets = new long[arrays.size()];
for (int i = 0; i < arrays.size(); i++) {
INDArray array = arrays.get(i);
Pointer x = AtomicAllocator.getInstance().getPointer(array, context);
Pointer xShapeInfo = AtomicAllocator.getInstance().getPointer(array.shapeInfoDataBuffer(), context);
TADManager tadManager = Nd4j.getExecutioner().getTADManager();
int[] dimension = dimensions.size() > 1 ? dimensions.get(i) : dimensions.get(0);
Pair<DataBuffer, DataBuffer> tadBuffers = tadManager.getTADOnlyShapeInfo(array, dimension);
// log.info("Original shape: {}; dimension: {}; TAD shape: {}", array.shapeInfoDataBuffer().asInt(), dimension, tadBuffers.getFirst().asInt());
Pointer tadShapeInfo = AtomicAllocator.getInstance().getPointer(tadBuffers.getFirst(), context);
DataBuffer offsets = tadBuffers.getSecond();
if (offsets.length() != numTads)
throw new ND4JIllegalStateException("Can't symmetrically shuffle arrays with non-equal number of TADs");
Pointer tadOffset = AtomicAllocator.getInstance().getPointer(offsets, context);
xPointers[i] = x.address();
xShapes[i] = xShapeInfo.address();
tadShapes[i] = tadShapeInfo.address();
tadOffsets[i] = tadOffset.address();
}
CudaDoubleDataBuffer tempX = new CudaDoubleDataBuffer(arrays.size());
CudaDoubleDataBuffer tempShapes = new CudaDoubleDataBuffer(arrays.size());
CudaDoubleDataBuffer tempTAD = new CudaDoubleDataBuffer(arrays.size());
CudaDoubleDataBuffer tempOffsets = new CudaDoubleDataBuffer(arrays.size());
AtomicAllocator.getInstance().memcpyBlocking(tempX, new LongPointer(xPointers), xPointers.length * 8, 0);
AtomicAllocator.getInstance().memcpyBlocking(tempShapes, new LongPointer(xShapes), xPointers.length * 8, 0);
AtomicAllocator.getInstance().memcpyBlocking(tempTAD, new LongPointer(tadShapes), xPointers.length * 8, 0);
AtomicAllocator.getInstance().memcpyBlocking(tempOffsets, new LongPointer(tadOffsets), xPointers.length * 8, 0);
if (Nd4j.dataType() == DataBuffer.Type.DOUBLE) {
nativeOps.shuffleDouble(extras, new PointerPointer(allocator.getPointer(tempX, context)), new PointerPointer(allocator.getPointer(tempShapes, context)), new PointerPointer(allocator.getPointer(tempX, context)), new PointerPointer(allocator.getPointer(tempShapes, context)), arrays.size(), (IntPointer) shuffleMap, new PointerPointer(allocator.getPointer(tempTAD, context)), new PointerPointer(allocator.getPointer(tempOffsets, context)));
} else if (Nd4j.dataType() == DataBuffer.Type.FLOAT) {
nativeOps.shuffleFloat(extras, new PointerPointer(allocator.getPointer(tempX, context)), new PointerPointer(allocator.getPointer(tempShapes, context)), new PointerPointer(allocator.getPointer(tempX, context)), new PointerPointer(allocator.getPointer(tempShapes, context)), arrays.size(), (IntPointer) shuffleMap, new PointerPointer(allocator.getPointer(tempTAD, context)), new PointerPointer(allocator.getPointer(tempOffsets, context)));
} else {
// HALFs
nativeOps.shuffleHalf(extras, new PointerPointer(allocator.getPointer(tempX, context)), new PointerPointer(allocator.getPointer(tempShapes, context)), new PointerPointer(allocator.getPointer(tempX, context)), new PointerPointer(allocator.getPointer(tempShapes, context)), arrays.size(), (IntPointer) shuffleMap, new PointerPointer(allocator.getPointer(tempTAD, context)), new PointerPointer(allocator.getPointer(tempOffsets, context)));
}
for (int f = 0; f < arrays.size(); f++) {
allocator.getFlowController().registerAction(context, arrays.get(f));
}
// just to keep reference
shuffle.address();
tempX.dataType();
tempShapes.dataType();
tempOffsets.dataType();
tempTAD.dataType();
}
use of org.nd4j.jita.allocator.impl.AtomicAllocator in project nd4j by deeplearning4j.
the class CudaExecutioner method invoke.
protected CudaContext invoke(TransformOp op) {
long st = profilingHookIn(op);
checkForCompression(op);
validateDataType(Nd4j.dataType(), op);
AtomicAllocator allocator = AtomicAllocator.getInstance();
if (extraz.get() == null)
extraz.set(new PointerPointer(32));
// Pow operations might be special
if (op.opNum() == 7) {
if (op.y() != null && op.y().isScalar()) {
Nd4j.getExecutioner().commit();
op.setY(Nd4j.valueArrayOf(op.x().shape(), op.y().getDouble(0)));
Nd4j.getExecutioner().commit();
}
}
CudaContext context = allocator.getFlowController().prepareAction(op.z(), op.x(), op.y());
if (CudaEnvironment.getInstance().getConfiguration().isDebug())
lastOp.set(op.opName());
// special temp array for IsMax along dimension
INDArray ret = null;
Pointer x = allocator.getPointer(op.x(), context);
Pointer xShapeInfo = allocator.getPointer(op.x().shapeInfoDataBuffer(), context);
Pointer extraArgs = op.extraArgs() != null ? allocator.getPointer(op.extraArgsDataBuff(), context) : null;
Pointer hostYShapeInfo = op.y() == null ? null : AddressRetriever.retrieveHostPointer(op.y().shapeInfoDataBuffer());
Pointer hostZShapeInfo = op.z() == null ? null : AddressRetriever.retrieveHostPointer(op.z().shapeInfoDataBuffer());
Pointer dimensionDevPointer = null;
Pointer dimensionHostPointer = null;
Pointer retPointer = null;
int[] dimension = null;
if (op.opNum() == 41 && op.extraArgs() != null) {
// for IsMax along dimension we need special temporary buffer
dimension = new int[(int) op.extraArgs()[0]];
for (int i = 0; i < dimension.length; i++) {
dimension[i] = (int) op.extraArgs()[i + 1];
}
for (int i = 0; i < dimension.length; i++) {
if (dimension[i] < 0)
dimension[i] += op.x().rank();
}
// do op along all dimensions
if (dimension.length == op.x().rank())
dimension = new int[] { Integer.MAX_VALUE };
int[] retShape = Shape.wholeArrayDimension(dimension) ? new int[] { 1, 1 } : ArrayUtil.removeIndex(op.x().shape(), dimension);
// ensure vector is proper shape
if (retShape.length == 1) {
if (dimension[0] == 0)
retShape = new int[] { 1, retShape[0] };
else
retShape = new int[] { retShape[0], 1 };
} else if (retShape.length == 0) {
retShape = new int[] { 1, 1 };
}
ret = Nd4j.zeros(retShape);
// FIXME: this maybe misleading use of this particular pointer
hostYShapeInfo = allocator.getPointer(ret.shapeInfoDataBuffer(), context);
// dimensionPointer = AtomicAllocator.getInstance().getPointer(Nd4j.createBuffer(dimension), context);
DataBuffer dimensionBuffer = allocator.getConstantBuffer(dimension);
dimensionDevPointer = allocator.getPointer(dimensionBuffer, context);
dimensionHostPointer = allocator.getHostPointer(dimensionBuffer);
retPointer = allocator.getPointer(ret, context);
}
Pointer hostTadShapeInfo = null;
Pointer devTadShapeInfo = null;
Pointer hostMaxTadShapeInfo = null;
Pointer devMaxTadShapeInfo = null;
Pair<DataBuffer, DataBuffer> tadBuffers;
Pair<DataBuffer, DataBuffer> tadMaxBuffers;
Pointer devTadOffsets = null;
Pointer devMaxTadOffsets = null;
if (op.opNum() >= 38 && op.opNum() <= 41) {
if (op.opNum() != 41) {
tadBuffers = tadManager.getTADOnlyShapeInfo(op.x(), new int[] { 0 });
tadMaxBuffers = tadManager.getTADOnlyShapeInfo(op.x(), new int[] { 1 });
hostTadShapeInfo = AddressRetriever.retrieveHostPointer(tadBuffers.getFirst());
devTadShapeInfo = allocator.getPointer(tadBuffers.getFirst(), context);
hostMaxTadShapeInfo = AddressRetriever.retrieveHostPointer(tadMaxBuffers.getFirst());
devMaxTadShapeInfo = allocator.getPointer(tadMaxBuffers.getFirst(), context);
DataBuffer offsets = tadBuffers.getSecond();
devTadOffsets = offsets == null ? null : allocator.getPointer(offsets, context);
DataBuffer maxOffsets = tadMaxBuffers.getSecond();
devMaxTadOffsets = maxOffsets == null ? null : allocator.getPointer(maxOffsets, context);
} else {
tadBuffers = tadManager.getTADOnlyShapeInfo(op.z(), dimension);
hostTadShapeInfo = AddressRetriever.retrieveHostPointer(tadBuffers.getFirst());
devTadShapeInfo = AtomicAllocator.getInstance().getPointer(tadBuffers.getFirst(), context);
DataBuffer offsets = tadBuffers.getSecond();
devTadOffsets = offsets == null ? null : allocator.getPointer(offsets, context);
}
}
Pointer z = allocator.getPointer(op.z(), context);
Pointer zShapeInfo = allocator.getPointer(op.z().shapeInfoDataBuffer(), context);
PointerPointer xShapeInfoHostPointer = // 0
extraz.get().put(// 0
AddressRetriever.retrieveHostPointer(op.x().shapeInfoDataBuffer()), // 1
context.getOldStream(), // 2
allocator.getDeviceIdPointer(), // 3
context.getBufferAllocation(), // 4
context.getBufferReduction(), // 5
context.getBufferScalar(), // 6
context.getBufferSpecial(), // 7
hostYShapeInfo, // 8
hostZShapeInfo, // 9
hostTadShapeInfo, // 10
devTadShapeInfo, // 11
devTadOffsets, // 12
hostMaxTadShapeInfo, // 13
devMaxTadShapeInfo, // 14
devMaxTadOffsets, // special pointer for IsMax // 15
dimensionDevPointer, // special pointer for IsMax // 16
dimensionHostPointer, // special pointer for IsMax // 17
retPointer, new CudaPointer(dimension == null ? 0 : dimension.length));
if (op.y() != null) {
Pointer y = allocator.getPointer(op.y(), context);
Pointer yShapeInfo = allocator.getPointer(op.y().shapeInfoDataBuffer(), context);
int xEWS = op.x().elementWiseStride();
int yEWS = op.y().elementWiseStride();
int zEWS = op.z().elementWiseStride();
boolean xRow = op.x().isRowVector();
boolean yRow = op.y().isRowVector();
boolean zRow = op.z().isRowVector();
if (op.x().data().dataType() == DataBuffer.Type.DOUBLE) {
if ((xEWS >= 1 && yEWS >= 1 && zEWS >= 1 && !op.isExecSpecial() && op.x().ordering() == op.y().ordering() && op.x().ordering() == op.z().ordering()) || (xEWS >= 1 && yEWS == xEWS && zEWS == xEWS && xRow && yRow && zRow)) {
nativeOps.execPairwiseTransformDouble(xShapeInfoHostPointer, op.opNum(), (DoublePointer) x, xEWS, (DoublePointer) y, yEWS, (DoublePointer) z, zEWS, (DoublePointer) extraArgs, op.n());
} else {
nativeOps.execPairwiseTransformDouble(xShapeInfoHostPointer, op.opNum(), (DoublePointer) x, (IntPointer) xShapeInfo, (DoublePointer) y, (IntPointer) yShapeInfo, (DoublePointer) z, (IntPointer) zShapeInfo, (DoublePointer) extraArgs);
}
} else if (op.x().data().dataType() == DataBuffer.Type.FLOAT) {
if ((xEWS >= 1 && yEWS >= 1 && xEWS == yEWS && !op.isExecSpecial() && op.x().ordering() == op.y().ordering() && op.x().ordering() == op.z().ordering()) || (xEWS >= 1 && yEWS == xEWS && zEWS == xEWS && xRow && yRow && zRow)) {
nativeOps.execPairwiseTransformFloat(xShapeInfoHostPointer, op.opNum(), (FloatPointer) x, xEWS, (FloatPointer) y, yEWS, (FloatPointer) z, zEWS, (FloatPointer) extraArgs, op.n());
} else {
nativeOps.execPairwiseTransformFloat(xShapeInfoHostPointer, op.opNum(), (FloatPointer) x, (IntPointer) xShapeInfo, (FloatPointer) y, (IntPointer) yShapeInfo, (FloatPointer) z, (IntPointer) zShapeInfo, (FloatPointer) extraArgs);
}
} else {
if ((xEWS >= 1 && yEWS >= 1 && xEWS == op.y().elementWiseStride() && !op.isExecSpecial() && op.x().ordering() == op.y().ordering() && op.x().ordering() == op.z().ordering()) || (xEWS >= 1 && yEWS == xEWS && zEWS == xEWS && xRow && yRow && zRow)) {
nativeOps.execPairwiseTransformHalf(xShapeInfoHostPointer, op.opNum(), (ShortPointer) x, xEWS, (ShortPointer) y, yEWS, (ShortPointer) z, zEWS, (ShortPointer) extraArgs, op.n());
} else {
nativeOps.execPairwiseTransformHalf(xShapeInfoHostPointer, op.opNum(), (ShortPointer) x, (IntPointer) xShapeInfo, (ShortPointer) y, (IntPointer) yShapeInfo, (ShortPointer) z, (IntPointer) zShapeInfo, (ShortPointer) extraArgs);
}
}
} else {
if (op.x().data().dataType() == DataBuffer.Type.DOUBLE) {
if (op.x().elementWiseStride() >= 1 && !op.isExecSpecial() && op.z().ordering() == op.x().ordering()) {
nativeOps.execTransformDouble(xShapeInfoHostPointer, op.opNum(), (DoublePointer) x, op.x().elementWiseStride(), (DoublePointer) z, op.z().elementWiseStride(), (DoublePointer) extraArgs, op.n());
} else {
nativeOps.execTransformDouble(xShapeInfoHostPointer, op.opNum(), (DoublePointer) x, (IntPointer) xShapeInfo, (DoublePointer) z, (IntPointer) zShapeInfo, (DoublePointer) extraArgs);
}
} else if (op.x().data().dataType() == DataBuffer.Type.FLOAT) {
if (op.x().elementWiseStride() >= 1 && !op.isExecSpecial() && op.z().ordering() == op.x().ordering()) {
nativeOps.execTransformFloat(xShapeInfoHostPointer, op.opNum(), (FloatPointer) x, op.x().elementWiseStride(), (FloatPointer) z, op.z().elementWiseStride(), (FloatPointer) extraArgs, op.n());
} else {
nativeOps.execTransformFloat(xShapeInfoHostPointer, op.opNum(), (FloatPointer) x, (IntPointer) xShapeInfo, (FloatPointer) z, (IntPointer) zShapeInfo, (FloatPointer) extraArgs);
}
} else {
if (op.x().elementWiseStride() >= 1 && !op.isExecSpecial() && op.z().ordering() == op.x().ordering()) {
nativeOps.execTransformHalf(xShapeInfoHostPointer, op.opNum(), (ShortPointer) x, op.x().elementWiseStride(), (ShortPointer) z, op.z().elementWiseStride(), (ShortPointer) extraArgs, op.n());
} else {
nativeOps.execTransformHalf(xShapeInfoHostPointer, op.opNum(), (ShortPointer) x, (IntPointer) xShapeInfo, (ShortPointer) z, (IntPointer) zShapeInfo, (ShortPointer) extraArgs);
}
}
}
AtomicAllocator.getInstance().registerAction(context, op.z(), op.x(), op.y());
if (extraArgs != null)
extraArgs.address();
if (ret != null)
ret.elementWiseStride();
profilingHookOut(op, st);
return null;
}
Aggregations