use of org.orekit.forces.ForceModel in project Orekit by CS-SI.
the class PropagatorConversion method main.
/**
* Program entry point.
* @param args program arguments (unused here)
*/
public static void main(String[] args) {
try {
// configure Orekit
File home = new File(System.getProperty("user.home"));
File orekitData = new File(home, "orekit-data");
if (!orekitData.exists()) {
System.err.format(Locale.US, "Failed to find %s folder%n", orekitData.getAbsolutePath());
System.err.format(Locale.US, "You need to download %s from the %s page and unzip it in %s for this tutorial to work%n", "orekit-data.zip", "https://www.orekit.org/forge/projects/orekit/files", home.getAbsolutePath());
System.exit(1);
}
DataProvidersManager manager = DataProvidersManager.getInstance();
manager.addProvider(new DirectoryCrawler(orekitData));
// gravity field
NormalizedSphericalHarmonicsProvider provider = GravityFieldFactory.getNormalizedProvider(2, 0);
double mu = provider.getMu();
// inertial frame
Frame inertialFrame = FramesFactory.getEME2000();
// Initial date
AbsoluteDate initialDate = new AbsoluteDate(2004, 01, 01, 23, 30, 00.000, TimeScalesFactory.getUTC());
// Initial orbit (GTO)
// semi major axis in meters
final double a = 24396159;
// eccentricity
final double e = 0.72831215;
// inclination
final double i = FastMath.toRadians(7);
// perigee argument
final double omega = FastMath.toRadians(180);
// right ascention of ascending node
final double raan = FastMath.toRadians(261);
// mean anomaly
final double lM = 0;
Orbit initialOrbit = new KeplerianOrbit(a, e, i, omega, raan, lM, PositionAngle.MEAN, inertialFrame, initialDate, mu);
final double period = initialOrbit.getKeplerianPeriod();
// Initial state definition
final SpacecraftState initialState = new SpacecraftState(initialOrbit);
// Adaptive step integrator with a minimum step of 0.001 and a maximum step of 1000
final double minStep = 0.001;
final double maxStep = 1000.;
final double dP = 1.e-2;
final OrbitType orbType = OrbitType.CARTESIAN;
final double[][] tol = NumericalPropagator.tolerances(dP, initialOrbit, orbType);
final AbstractIntegrator integrator = new DormandPrince853Integrator(minStep, maxStep, tol[0], tol[1]);
// Propagator
NumericalPropagator numProp = new NumericalPropagator(integrator);
numProp.setInitialState(initialState);
numProp.setOrbitType(orbType);
// Force Models:
// 1 - Perturbing gravity field (only J2 is considered here)
ForceModel gravity = new HolmesFeatherstoneAttractionModel(FramesFactory.getITRF(IERSConventions.IERS_2010, true), provider);
// Add force models to the propagator
numProp.addForceModel(gravity);
// Propagator factory
PropagatorBuilder builder = new KeplerianPropagatorBuilder(initialOrbit, PositionAngle.TRUE, dP);
// Propagator converter
PropagatorConverter fitter = new FiniteDifferencePropagatorConverter(builder, 1.e-6, 5000);
// Resulting propagator
KeplerianPropagator kepProp = (KeplerianPropagator) fitter.convert(numProp, 2 * period, 251);
// Step handlers
StatesHandler numStepHandler = new StatesHandler();
StatesHandler kepStepHandler = new StatesHandler();
// Set up operating mode for the propagator as master mode
// with fixed step and specialized step handler
numProp.setMasterMode(60., numStepHandler);
kepProp.setMasterMode(60., kepStepHandler);
// Extrapolate from the initial to the final date
numProp.propagate(initialDate.shiftedBy(10. * period));
kepProp.propagate(initialDate.shiftedBy(10. * period));
// retrieve the states
List<SpacecraftState> numStates = numStepHandler.getStates();
List<SpacecraftState> kepStates = kepStepHandler.getStates();
// Print the results on the output file
File output = new File(new File(System.getProperty("user.home")), "elements.dat");
try (final PrintStream stream = new PrintStream(output, "UTF-8")) {
stream.println("# date Anum Akep Enum Ekep Inum Ikep LMnum LMkep");
for (SpacecraftState numState : numStates) {
for (SpacecraftState kepState : kepStates) {
if (numState.getDate().compareTo(kepState.getDate()) == 0) {
stream.println(numState.getDate() + " " + numState.getA() + " " + kepState.getA() + " " + numState.getE() + " " + kepState.getE() + " " + FastMath.toDegrees(numState.getI()) + " " + FastMath.toDegrees(kepState.getI()) + " " + FastMath.toDegrees(MathUtils.normalizeAngle(numState.getLM(), FastMath.PI)) + " " + FastMath.toDegrees(MathUtils.normalizeAngle(kepState.getLM(), FastMath.PI)));
break;
}
}
}
}
System.out.println("Results saved as file " + output);
File output1 = new File(new File(System.getProperty("user.home")), "elts_pv.dat");
try (final PrintStream stream = new PrintStream(output1, "UTF-8")) {
stream.println("# date pxn pyn pzn vxn vyn vzn pxk pyk pzk vxk vyk vzk");
for (SpacecraftState numState : numStates) {
for (SpacecraftState kepState : kepStates) {
if (numState.getDate().compareTo(kepState.getDate()) == 0) {
final double pxn = numState.getPVCoordinates().getPosition().getX();
final double pyn = numState.getPVCoordinates().getPosition().getY();
final double pzn = numState.getPVCoordinates().getPosition().getZ();
final double vxn = numState.getPVCoordinates().getVelocity().getX();
final double vyn = numState.getPVCoordinates().getVelocity().getY();
final double vzn = numState.getPVCoordinates().getVelocity().getZ();
final double pxk = kepState.getPVCoordinates().getPosition().getX();
final double pyk = kepState.getPVCoordinates().getPosition().getY();
final double pzk = kepState.getPVCoordinates().getPosition().getZ();
final double vxk = kepState.getPVCoordinates().getVelocity().getX();
final double vyk = kepState.getPVCoordinates().getVelocity().getY();
final double vzk = kepState.getPVCoordinates().getVelocity().getZ();
stream.println(numState.getDate() + " " + pxn + " " + pyn + " " + pzn + " " + vxn + " " + vyn + " " + vzn + " " + pxk + " " + pyk + " " + pzk + " " + vxk + " " + vyk + " " + vzk);
break;
}
}
}
}
System.out.println("Results saved as file " + output1);
} catch (OrekitException oe) {
System.err.println(oe.getLocalizedMessage());
System.exit(1);
} catch (IOException ioe) {
System.err.println(ioe.getLocalizedMessage());
System.exit(1);
}
}
use of org.orekit.forces.ForceModel in project Orekit by CS-SI.
the class MasterMode method main.
/**
* Program entry point.
* @param args program arguments (unused here)
*/
public static void main(String[] args) {
try {
// configure Orekit
File home = new File(System.getProperty("user.home"));
File orekitData = new File(home, "orekit-data");
if (!orekitData.exists()) {
System.err.format(Locale.US, "Failed to find %s folder%n", orekitData.getAbsolutePath());
System.err.format(Locale.US, "You need to download %s from the %s page and unzip it in %s for this tutorial to work%n", "orekit-data.zip", "https://www.orekit.org/forge/projects/orekit/files", home.getAbsolutePath());
System.exit(1);
}
DataProvidersManager manager = DataProvidersManager.getInstance();
manager.addProvider(new DirectoryCrawler(orekitData));
// gravitation coefficient
double mu = 3.986004415e+14;
// inertial frame
Frame inertialFrame = FramesFactory.getEME2000();
// Initial date
AbsoluteDate initialDate = new AbsoluteDate(2004, 01, 01, 23, 30, 00.000, TimeScalesFactory.getUTC());
// Initial orbit
// semi major axis in meters
double a = 24396159;
// eccentricity
double e = 0.72831215;
// inclination
double i = FastMath.toRadians(7);
// perigee argument
double omega = FastMath.toRadians(180);
// right ascention of ascending node
double raan = FastMath.toRadians(261);
// mean anomaly
double lM = 0;
Orbit initialOrbit = new KeplerianOrbit(a, e, i, omega, raan, lM, PositionAngle.MEAN, inertialFrame, initialDate, mu);
// Initial state definition
SpacecraftState initialState = new SpacecraftState(initialOrbit);
// Adaptive step integrator with a minimum step of 0.001 and a maximum step of 1000
final double minStep = 0.001;
final double maxstep = 1000.0;
final double positionTolerance = 10.0;
final OrbitType propagationType = OrbitType.KEPLERIAN;
final double[][] tolerances = NumericalPropagator.tolerances(positionTolerance, initialOrbit, propagationType);
AdaptiveStepsizeIntegrator integrator = new DormandPrince853Integrator(minStep, maxstep, tolerances[0], tolerances[1]);
// Propagator
NumericalPropagator propagator = new NumericalPropagator(integrator);
propagator.setOrbitType(propagationType);
// Force Model (reduced to perturbing gravity field)
final NormalizedSphericalHarmonicsProvider provider = GravityFieldFactory.getNormalizedProvider(10, 10);
ForceModel holmesFeatherstone = new HolmesFeatherstoneAttractionModel(FramesFactory.getITRF(IERSConventions.IERS_2010, true), provider);
// Add force model to the propagator
propagator.addForceModel(holmesFeatherstone);
// Set up initial state in the propagator
propagator.setInitialState(initialState);
// Set up operating mode for the propagator as master mode
// with fixed step and specialized step handler
propagator.setMasterMode(60., new TutorialStepHandler());
// Extrapolate from the initial to the final date
SpacecraftState finalState = propagator.propagate(initialDate.shiftedBy(630.));
KeplerianOrbit o = (KeplerianOrbit) OrbitType.KEPLERIAN.convertType(finalState.getOrbit());
System.out.format(Locale.US, "Final state:%n%s %12.3f %10.8f %10.6f %10.6f %10.6f %10.6f%n", finalState.getDate(), o.getA(), o.getE(), FastMath.toDegrees(o.getI()), FastMath.toDegrees(o.getPerigeeArgument()), FastMath.toDegrees(o.getRightAscensionOfAscendingNode()), FastMath.toDegrees(o.getTrueAnomaly()));
} catch (OrekitException oe) {
System.err.println(oe.getMessage());
}
}
Aggregations