use of org.voltdb.planner.parseinfo.StmtTargetTableScan in project voltdb by VoltDB.
the class SeqScanPlanNode method computeCostEstimates.
@Override
public void computeCostEstimates(long childOutputTupleCountEstimate, DatabaseEstimates estimates, ScalarValueHints[] paramHints) {
if (m_isSubQuery) {
// Get estimates from the sub-query
// @TODO For the sub-query the cost estimates will be calculated separately
// At the moment its contribution to the parent's cost plan is irrelevant because
// all parent plans have the same best cost plan for the sub-query
m_estimatedProcessedTupleCount = SUBQUERY_TABLE_ESTIMATES_HACK.minTuples;
m_estimatedOutputTupleCount = SUBQUERY_TABLE_ESTIMATES_HACK.minTuples;
return;
}
Table target = ((StmtTargetTableScan) m_tableScan).getTargetTable();
TableEstimates tableEstimates = estimates.getEstimatesForTable(target.getTypeName());
// This maxTuples value estimates the number of tuples fetched from the sequential scan.
// It's a vague measure of the cost of the scan.
// Its accuracy depends a lot on what kind of post-filtering or projection needs to happen, if any.
// The tuplesRead value is also used to estimate the number of RESULT rows, regardless of
// how effective post-filtering might be -- as if all rows passed the filters.
// This is at least semi-consistent with the ignoring of post-filter effects in IndexScanPlanNode.
// In effect, though, it gives index scans an "unfair" advantage when they reduce the estimated result size
// by taking into account the indexed filters -- follow-on plan steps, sorts (etc.), are costed lower
// as if they are operating on fewer rows than would have come out of the seqscan,
// though that's nonsense.
// In any case, it's important to keep an eye on any changes (discounts) to SeqScanPlanNode's costing
// here to make sure that SeqScanPlanNode never gains an unfair advantage over IndexScanPlanNode.
m_estimatedProcessedTupleCount = tableEstimates.maxTuples;
m_estimatedOutputTupleCount = tableEstimates.maxTuples;
}
use of org.voltdb.planner.parseinfo.StmtTargetTableScan in project voltdb by VoltDB.
the class CatalogUtil method updateUsageAnnotations.
/**
* Given plan graphs and a SQL stmt, compute a bi-directonal usage map between
* schema (indexes, table & views) and SQL/Procedures.
* Use "annotation" objects to store this extra information in the catalog
* during compilation and catalog report generation.
*/
public static void updateUsageAnnotations(Database db, Statement stmt, AbstractPlanNode topPlan, AbstractPlanNode bottomPlan) {
Map<String, StmtTargetTableScan> tablesRead = new TreeMap<>();
Collection<String> indexes = new TreeSet<>();
if (topPlan != null) {
topPlan.getTablesAndIndexes(tablesRead, indexes);
}
if (bottomPlan != null) {
bottomPlan.getTablesAndIndexes(tablesRead, indexes);
}
String updated = "";
if (!stmt.getReadonly()) {
updated = topPlan.getUpdatedTable();
if (updated == null) {
updated = bottomPlan.getUpdatedTable();
}
assert (updated.length() > 0);
}
Set<String> readTableNames = tablesRead.keySet();
stmt.setTablesread(StringUtils.join(readTableNames, ","));
stmt.setTablesupdated(updated);
Set<String> tableDotIndexNames = new TreeSet<>();
for (Table table : db.getTables()) {
if (readTableNames.contains(table.getTypeName())) {
readTableNames.remove(table.getTypeName());
for (String indexName : indexes) {
Index index = table.getIndexes().get(indexName);
if (index != null) {
tableDotIndexNames.add(table.getTypeName() + "." + index.getTypeName());
}
}
}
}
String indexString = StringUtils.join(tableDotIndexNames, ",");
stmt.setIndexesused(indexString);
assert (tablesRead.size() == 0);
}
use of org.voltdb.planner.parseinfo.StmtTargetTableScan in project voltdb by VoltDB.
the class SubPlanAssembler method getRelevantAccessPathForIndex.
/**
* Given a table, a set of predicate expressions and a specific index, find the best way to
* access the data using the given index, or return null if no good way exists.
*
* @param table The table we want data from.
* @param exprs The set of predicate expressions.
* @param index The index we want to use to access the data.
* @return A valid access path using the data or null if none found.
*/
protected AccessPath getRelevantAccessPathForIndex(StmtTableScan tableScan, List<AbstractExpression> exprs, Index index) {
if (tableScan instanceof StmtTargetTableScan == false) {
return null;
}
// Copy the expressions to a new working list that can be culled as filters are processed.
List<AbstractExpression> filtersToCover = new ArrayList<>(exprs);
boolean indexIsGeographical;
String exprsjson = index.getExpressionsjson();
// This list remains null if the index is just on simple columns.
List<AbstractExpression> indexedExprs = null;
// This vector of indexed columns remains null if indexedExprs is in use.
List<ColumnRef> indexedColRefs = null;
int[] indexedColIds = null;
int keyComponentCount;
if (exprsjson.isEmpty()) {
// Don't bother to build a dummy indexedExprs list for a simple index on columns.
// Just leave it null and handle this simpler case specially via indexedColRefs or
// indexedColIds, all along the way.
indexedColRefs = CatalogUtil.getSortedCatalogItems(index.getColumns(), "index");
keyComponentCount = indexedColRefs.size();
indexedColIds = new int[keyComponentCount];
int ii = 0;
for (ColumnRef cr : indexedColRefs) {
indexedColIds[ii++] = cr.getColumn().getIndex();
}
indexIsGeographical = isAGeoColumnIndex(indexedColRefs);
} else {
try {
// This MAY want to happen once when the plan is loaded from the catalog
// and cached in a sticky cached index-to-expressions map?
indexedExprs = AbstractExpression.fromJSONArrayString(exprsjson, tableScan);
keyComponentCount = indexedExprs.size();
} catch (JSONException e) {
e.printStackTrace();
assert (false);
return null;
}
indexIsGeographical = isAGeoExpressionIndex(indexedExprs);
}
AccessPath retval = new AccessPath();
retval.index = index;
// in tandem with other indexes within one more powerful indexscan.
if (indexIsGeographical) {
return getRelevantAccessPathForGeoIndex(retval, tableScan, indexedExprs, indexedColRefs, filtersToCover);
}
// Hope for the best -- full coverage with equality matches on every expression in the index.
retval.use = IndexUseType.COVERING_UNIQUE_EQUALITY;
// Try to use the index scan's inherent ordering to implement the ORDER BY clause.
// The effects of determineIndexOrdering are reflected in
// retval.sortDirection, orderSpoilers, nSpoilers and bindingsForOrder.
// In some borderline cases, the determination to use the index's order is optimistic and
// provisional; it can be undone later in this function as new info comes to light.
int[] orderSpoilers = new int[keyComponentCount];
List<AbstractExpression> bindingsForOrder = new ArrayList<>();
int nSpoilers = determineIndexOrdering(tableScan, keyComponentCount, indexedExprs, indexedColRefs, retval, orderSpoilers, bindingsForOrder);
// Use as many covering indexed expressions as possible to optimize comparator expressions that can use them.
// Start with equality comparisons on as many (prefix) indexed expressions as possible.
int coveredCount = 0;
// If determineIndexOrdering found one or more spoilers,
// index key components that might interfere with the desired ordering of the result,
// their ill effects are eliminated when they are constrained to be equal to constants.
// These are called "recovered spoilers".
// When their count reaches the count of spoilers, the order of the result will be as desired.
// Initial "prefix key component" spoilers can be recovered in the normal course
// of finding prefix equality filters for those key components.
// The spoiler key component positions are listed (ascending) in orderSpoilers.
// After the last prefix equality filter has been found,
// nRecoveredSpoilers in comparison to nSpoilers may indicate remaining unrecovered spoilers.
// That edge case motivates a renewed search for (non-prefix) equality filters solely for the purpose
// of recovering the spoilers and confirming the relevance of the result's index ordering.
int nRecoveredSpoilers = 0;
AbstractExpression coveringExpr = null;
int coveringColId = -1;
// Currently, an index can be used with at most one IN LIST filter expression.
// Otherwise, MaterializedScans would have to be multi-column and populated by a cross-product
// of multiple lists OR multiple MaterializedScans would have to be cross-joined to get a
// multi-column LHS for the injected NestLoopIndexJoin used for IN LIST indexing.
// So, note the one IN LIST filter when it is found, mostly to remember that one has been found.
// This has implications for what kinds of filters on other key components can be included in
// the index scan.
IndexableExpression inListExpr = null;
for (; (coveredCount < keyComponentCount) && !filtersToCover.isEmpty(); ++coveredCount) {
if (indexedExprs == null) {
coveringColId = indexedColIds[coveredCount];
} else {
coveringExpr = indexedExprs.get(coveredCount);
}
// Equality filters get first priority.
boolean allowIndexedJoinFilters = (inListExpr == null);
IndexableExpression eqExpr = getIndexableExpressionFromFilters(// The only difference is that NULL is not distinct from NULL, but NULL != NULL. (ENG-11096)
ExpressionType.COMPARE_EQUAL, ExpressionType.COMPARE_NOTDISTINCT, coveringExpr, coveringColId, tableScan, filtersToCover, allowIndexedJoinFilters, EXCLUDE_FROM_POST_FILTERS);
if (eqExpr == null) {
// So, only the first IN LIST filter matching a key component is considered.
if (inListExpr == null) {
// Also, it can not be considered if there was a prior key component that has an
// equality filter that is based on another table.
// Accepting an IN LIST filter implies rejecting later any filters based on other
// tables' columns.
inListExpr = getIndexableExpressionFromFilters(ExpressionType.COMPARE_IN, ExpressionType.COMPARE_IN, coveringExpr, coveringColId, tableScan, filtersToCover, false, EXCLUDE_FROM_POST_FILTERS);
if (inListExpr != null) {
// were based on constants and/or parameters.
for (AbstractExpression eq_comparator : retval.indexExprs) {
AbstractExpression otherExpr = eq_comparator.getRight();
if (otherExpr.hasTupleValueSubexpression()) {
// Can't index this IN LIST filter without some kind of three-way NLIJ,
// so, add it to the post-filters.
AbstractExpression in_list_comparator = inListExpr.getOriginalFilter();
retval.otherExprs.add(in_list_comparator);
inListExpr = null;
break;
}
}
eqExpr = inListExpr;
}
}
if (eqExpr == null) {
break;
}
}
AbstractExpression comparator = eqExpr.getFilter();
retval.indexExprs.add(comparator);
retval.bindings.addAll(eqExpr.getBindings());
// A non-empty endExprs has the later side effect of invalidating descending sort order
// in all cases except the edge case of full coverage equality comparison.
// Even that case must be further qualified to exclude indexed IN-LIST
// unless/until the MaterializedScan can be configured to iterate in descending order
// (vs. always ascending).
// In the case of the IN LIST expression, both the search key and the end condition need
// to be rewritten to enforce equality in turn with each list element "row" produced by
// the MaterializedScan. This happens in getIndexAccessPlanForTable.
retval.endExprs.add(comparator);
// In this case, consider the spoiler recovered.
if (nRecoveredSpoilers < nSpoilers && orderSpoilers[nRecoveredSpoilers] == coveredCount) {
// In the case of IN-LIST equality, the key component will not have a constant value.
if (eqExpr != inListExpr) {
// One recovery closer to confirming the sort order.
++nRecoveredSpoilers;
}
}
}
// which happens to be the only use case for non-scannable (i.e. HASH) indexes.
if (coveredCount == keyComponentCount) {
// All remaining filters get covered as post-filters
// to be applied after the "random access" to the exact index key.
retval.otherExprs.addAll(filtersToCover);
if (retval.sortDirection != SortDirectionType.INVALID) {
// This IS an odd (maybe non-existent) case
// -- equality filters found on on all ORDER BY expressions?
// That said, with all key components covered, there can't be any spoilers.
retval.bindings.addAll(bindingsForOrder);
}
return retval;
}
if (!IndexType.isScannable(index.getType())) {
// Failure to equality-match all expressions in a non-scannable index is unacceptable.
return null;
}
// by continuing the search for (non-prefix) constant equality filters.
if (nRecoveredSpoilers < nSpoilers) {
// There's an order to spoil.
assert (retval.sortDirection != SortDirectionType.INVALID);
// Try to associate each skipped index key component with an equality filter.
// If a key component equals a constant, its value can't actually spoil the ordering.
// This extra checking is only needed when all of these conditions hold:
// -- There are three or more index key components.
// -- Two or more of them are in the ORDER BY clause
// -- One or more of them are "spoilers", i.e. are not in the ORDER BY clause.
// -- A "spoiler" falls between two non-spoilers in the index key component list.
// e.g. "CREATE INDEX ... ON (A, B, C);" then "SELECT ... WHERE B=? ORDER BY A, C;"
List<AbstractExpression> otherBindingsForOrder = recoverOrderSpoilers(orderSpoilers, nSpoilers, nRecoveredSpoilers, indexedExprs, indexedColIds, tableScan, filtersToCover);
if (otherBindingsForOrder == null) {
// Some order spoiler didn't have an equality filter.
// Invalidate the provisional indexed ordering.
retval.sortDirection = SortDirectionType.INVALID;
retval.m_stmtOrderByIsCompatible = false;
retval.m_windowFunctionUsesIndex = NO_INDEX_USE;
// suddenly irrelevant
bindingsForOrder.clear();
} else {
// Any non-null bindings list, even an empty one,
// denotes success -- all spoilers were equality filtered.
bindingsForOrder.addAll(otherBindingsForOrder);
}
}
IndexableExpression startingBoundExpr = null;
IndexableExpression endingBoundExpr = null;
if (!filtersToCover.isEmpty()) {
// A scannable index allows inequality matches, but only on the first key component
// missing a usable equality comparator.
// Look for a double-ended bound on it.
// This is always the result of an edge case:
// "indexed-general-expression LIKE prefix-constant".
// The simpler case "column LIKE prefix-constant"
// has already been re-written by the HSQL parser
// into separate upper and lower bound inequalities.
IndexableExpression doubleBoundExpr = getIndexableExpressionFromFilters(ExpressionType.COMPARE_LIKE, ExpressionType.COMPARE_LIKE, coveringExpr, coveringColId, tableScan, filtersToCover, false, EXCLUDE_FROM_POST_FILTERS);
// This MIGHT not always provide the most selective filtering.
if (doubleBoundExpr != null) {
startingBoundExpr = doubleBoundExpr.extractStartFromPrefixLike();
endingBoundExpr = doubleBoundExpr.extractEndFromPrefixLike();
} else {
boolean allowIndexedJoinFilters = (inListExpr == null);
// Look for a lower bound.
startingBoundExpr = getIndexableExpressionFromFilters(ExpressionType.COMPARE_GREATERTHAN, ExpressionType.COMPARE_GREATERTHANOREQUALTO, coveringExpr, coveringColId, tableScan, filtersToCover, allowIndexedJoinFilters, EXCLUDE_FROM_POST_FILTERS);
// Look for an upper bound.
endingBoundExpr = getIndexableExpressionFromFilters(ExpressionType.COMPARE_LESSTHAN, ExpressionType.COMPARE_LESSTHANOREQUALTO, coveringExpr, coveringColId, tableScan, filtersToCover, allowIndexedJoinFilters, EXCLUDE_FROM_POST_FILTERS);
}
if (startingBoundExpr != null) {
AbstractExpression lowerBoundExpr = startingBoundExpr.getFilter();
retval.indexExprs.add(lowerBoundExpr);
retval.bindings.addAll(startingBoundExpr.getBindings());
if (lowerBoundExpr.getExpressionType() == ExpressionType.COMPARE_GREATERTHAN) {
retval.lookupType = IndexLookupType.GT;
} else {
assert (lowerBoundExpr.getExpressionType() == ExpressionType.COMPARE_GREATERTHANOREQUALTO);
retval.lookupType = IndexLookupType.GTE;
}
retval.use = IndexUseType.INDEX_SCAN;
}
if (endingBoundExpr != null) {
AbstractExpression upperBoundComparator = endingBoundExpr.getFilter();
retval.use = IndexUseType.INDEX_SCAN;
retval.bindings.addAll(endingBoundExpr.getBindings());
// do not do the reverse scan optimization
if (retval.sortDirection != SortDirectionType.DESC && (startingBoundExpr != null || retval.sortDirection == SortDirectionType.ASC)) {
retval.endExprs.add(upperBoundComparator);
if (retval.lookupType == IndexLookupType.EQ) {
retval.lookupType = IndexLookupType.GTE;
}
} else {
// only do reverse scan optimization when no lowerBoundExpr and lookup type is either < or <=.
if (upperBoundComparator.getExpressionType() == ExpressionType.COMPARE_LESSTHAN) {
retval.lookupType = IndexLookupType.LT;
} else {
assert upperBoundComparator.getExpressionType() == ExpressionType.COMPARE_LESSTHANOREQUALTO;
retval.lookupType = IndexLookupType.LTE;
}
// that here to optimize out the "NOT NULL" comparator for NOT NULL columns
if (startingBoundExpr == null) {
AbstractExpression newComparator = new OperatorExpression(ExpressionType.OPERATOR_NOT, new OperatorExpression(ExpressionType.OPERATOR_IS_NULL), null);
newComparator.getLeft().setLeft(upperBoundComparator.getLeft());
newComparator.finalizeValueTypes();
retval.otherExprs.add(newComparator);
} else {
int lastIdx = retval.indexExprs.size() - 1;
retval.indexExprs.remove(lastIdx);
AbstractExpression lowerBoundComparator = startingBoundExpr.getFilter();
retval.endExprs.add(lowerBoundComparator);
}
// add to indexExprs because it will be used as part of searchKey
retval.indexExprs.add(upperBoundComparator);
// initialExpr is set for both cases
// but will be used for LTE and only when overflow case of LT.
// The initial expression is needed to control a (short?) forward scan to
// adjust the start of a reverse iteration after it had to initially settle
// for starting at "greater than a prefix key".
retval.initialExpr.addAll(retval.indexExprs);
}
}
}
if (endingBoundExpr == null) {
if (retval.sortDirection == SortDirectionType.DESC) {
// Optimizable to use reverse scan.
if (retval.endExprs.size() == 0) {
// no prefix equality filters
if (startingBoundExpr != null) {
retval.indexExprs.clear();
AbstractExpression comparator = startingBoundExpr.getFilter();
retval.endExprs.add(comparator);
// The initial expression is needed to control a (short?) forward scan to
// adjust the start of a reverse iteration after it had to initially settle
// for starting at "greater than a prefix key".
retval.initialExpr.addAll(retval.indexExprs);
// Look up type here does not matter in EE, because the # of active search keys is 0.
// EE use m_index->moveToEnd(false) to get END, setting scan to reverse scan.
// retval.lookupType = IndexLookupType.LTE;
}
} else {
// there are prefix equality filters -- possible for a reverse scan?
// set forward scan.
retval.sortDirection = SortDirectionType.INVALID;
// Turn this part on when we have EE support for reverse scan with query GT and GTE.
/*
boolean isReverseScanPossible = true;
if (filtersToCover.size() > 0) {
// Look forward to see the remainning filters.
for (int ii = coveredCount + 1; ii < keyComponentCount; ++ii) {
if (indexedExprs == null) {
coveringColId = indexedColIds[ii];
} else {
coveringExpr = indexedExprs.get(ii);
}
// Equality filters get first priority.
boolean allowIndexedJoinFilters = (inListExpr == null);
IndexableExpression eqExpr = getIndexableExpressionFromFilters(
ExpressionType.COMPARE_EQUAL, ExpressionType.COMPARE_EQUAL,
coveringExpr, coveringColId, table, filtersToCover,
allowIndexedJoinFilters, KEEP_IN_POST_FILTERS);
if (eqExpr == null) {
isReverseScanPossible = false;
}
}
}
if (isReverseScanPossible) {
if (startingBoundExpr != null) {
int lastIdx = retval.indexExprs.size() -1;
retval.indexExprs.remove(lastIdx);
AbstractExpression comparator = startingBoundExpr.getFilter();
retval.endExprs.add(comparator);
retval.initialExpr.addAll(retval.indexExprs);
retval.lookupType = IndexLookupType.LTE;
}
} else {
// set forward scan.
retval.sortDirection = SortDirectionType.INVALID;
}
*/
}
}
}
// index not relevant to expression
if (retval.indexExprs.size() == 0 && retval.endExprs.size() == 0 && retval.sortDirection == SortDirectionType.INVALID) {
return null;
}
// components that are not being filtered.
if (retval.indexExprs.size() < keyComponentCount) {
correctAccessPathForPrefixKeyCoverage(retval, startingBoundExpr);
}
// All remaining filters get applied as post-filters
// on tuples fetched from the index.
retval.otherExprs.addAll(filtersToCover);
if (retval.sortDirection != SortDirectionType.INVALID) {
retval.bindings.addAll(bindingsForOrder);
}
return retval;
}
use of org.voltdb.planner.parseinfo.StmtTargetTableScan in project voltdb by VoltDB.
the class AbstractPlanNode method hasReplicatedResult.
public boolean hasReplicatedResult() {
Map<String, StmtTargetTableScan> tablesRead = new TreeMap<>();
getTablesAndIndexes(tablesRead, null);
for (StmtTableScan tableScan : tablesRead.values()) {
if (!tableScan.getIsReplicated()) {
return false;
}
}
return true;
}
use of org.voltdb.planner.parseinfo.StmtTargetTableScan in project voltdb by VoltDB.
the class AbstractParsedStmt method parseTable.
/**
*
* @param tableNode
*/
private void parseTable(VoltXMLElement tableNode) {
String tableName = tableNode.attributes.get("table");
assert (tableName != null);
String tableAlias = tableNode.attributes.get("tablealias");
if (tableAlias == null) {
tableAlias = tableName;
}
// Hsql rejects name conflicts in a single query
m_tableAliasListAsJoinOrder.add(tableAlias);
VoltXMLElement subqueryElement = null;
// Possible sub-query
for (VoltXMLElement childNode : tableNode.children) {
if (!childNode.name.equals("tablesubquery")) {
continue;
}
if (childNode.children.isEmpty()) {
continue;
}
// sub-query FROM (SELECT ...)
subqueryElement = childNode.children.get(0);
break;
}
// add table to the query cache before processing the JOIN/WHERE expressions
// The order is important because processing sub-query expressions assumes that
// the sub-query is already registered
StmtTableScan tableScan = null;
Table table = null;
// In case of a subquery we need to preserve its filter expressions
AbstractExpression simplifiedSubqueryFilter = null;
if (subqueryElement == null) {
table = getTableFromDB(tableName);
assert (table != null);
tableScan = addTableToStmtCache(table, tableAlias);
m_tableList.add(table);
} else {
AbstractParsedStmt subquery = parseFromSubQuery(subqueryElement);
StmtSubqueryScan subqueryScan = addSubqueryToStmtCache(subquery, tableAlias);
tableScan = subqueryScan;
StmtTargetTableScan simpler = simplifierForSubquery(subquery);
if (simpler != null) {
tableScan = addSimplifiedSubqueryToStmtCache(subqueryScan, simpler);
table = simpler.getTargetTable();
// Extract subquery's filters
assert (subquery.m_joinTree != null);
// Adjust the table alias in all TVEs from the eliminated
// subquery expressions. Example:
// SELECT TA2.CA FROM (SELECT C CA FROM T TA1 WHERE C > 0) TA2
// The table alias TA1 from the original TVE (T)TA1.C from the
// subquery WHERE condition needs to be replaced with the alias
// TA2. The new TVE will be (T)TA2.C.
// The column alias does not require an adjustment.
simplifiedSubqueryFilter = subquery.m_joinTree.getAllFilters();
List<TupleValueExpression> tves = ExpressionUtil.getTupleValueExpressions(simplifiedSubqueryFilter);
for (TupleValueExpression tve : tves) {
tve.setTableAlias(tableScan.getTableAlias());
tve.setOrigStmtId(m_stmtId);
}
}
}
AbstractExpression joinExpr = parseJoinCondition(tableNode);
AbstractExpression whereExpr = parseWhereCondition(tableNode);
if (simplifiedSubqueryFilter != null) {
// Add subqueruy's expressions as JOIN filters to make sure they will
// stay at the node level in case of an OUTER joins and won't affect
// the join simplification process:
// select * from T LEFT JOIN (select C FROM T1 WHERE C > 2) S ON T.C = S.C;
joinExpr = (joinExpr != null) ? ExpressionUtil.combine(joinExpr, simplifiedSubqueryFilter) : simplifiedSubqueryFilter;
}
// The join type of the leaf node is always INNER
// For a new tree its node's ids start with 0 and keep incrementing by 1
int nodeId = (m_joinTree == null) ? 0 : m_joinTree.getId() + 1;
JoinNode leafNode;
if (table != null) {
assert (tableScan instanceof StmtTargetTableScan);
leafNode = new TableLeafNode(nodeId, joinExpr, whereExpr, (StmtTargetTableScan) tableScan);
} else {
assert (tableScan instanceof StmtSubqueryScan);
leafNode = new SubqueryLeafNode(nodeId, joinExpr, whereExpr, (StmtSubqueryScan) tableScan);
leafNode.updateContentDeterminismMessage(((StmtSubqueryScan) tableScan).calculateContentDeterminismMessage());
}
if (m_joinTree == null) {
// this is the first table
m_joinTree = leafNode;
} else {
// Build the tree by attaching the next table always to the right
// The node's join type is determined by the type of its right node
JoinType joinType = JoinType.get(tableNode.attributes.get("jointype"));
assert (joinType != JoinType.INVALID);
JoinNode joinNode = new BranchNode(nodeId + 1, joinType, m_joinTree, leafNode);
m_joinTree = joinNode;
}
}
Aggregations