use of soot.jimple.spark.geom.dataRep.PlainConstraint in project soot by Sable.
the class HeapInsNodeGenerator method initFlowGraph.
@Override
public void initFlowGraph(GeomPointsTo ptAnalyzer) {
int k;
int n_legal_cons;
int nf1, nf2;
int code;
IVarAbstraction my_lhs, my_rhs;
// Visit all the simple constraints
n_legal_cons = 0;
for (PlainConstraint cons : ptAnalyzer.constraints) {
if (!cons.isActive)
continue;
my_lhs = cons.getLHS().getRepresentative();
my_rhs = cons.getRHS().getRepresentative();
nf1 = ptAnalyzer.getMethodIDFromPtr(my_lhs);
nf2 = ptAnalyzer.getMethodIDFromPtr(my_rhs);
// Test how many globals are in this constraint
code = ((nf1 == Constants.SUPER_MAIN ? 1 : 0) << 1) | (nf2 == Constants.SUPER_MAIN ? 1 : 0);
switch(cons.type) {
case Constants.NEW_CONS:
// We directly add the objects to the points-to set
my_rhs.add_points_to_3((AllocNode) my_lhs.getWrappedNode(), // to decide if the receiver is a global or not
(code & 1) == 1 ? 0 : 1, // if the object is a global or not
(code >> 1) == 1 ? 0 : 1, (code & 1) == 1 ? ptAnalyzer.context_size[nf1] : ptAnalyzer.context_size[nf2]);
// Enqueue to the worklist
ptAnalyzer.getWorklist().push(my_rhs);
break;
case Constants.ASSIGN_CONS:
// The core part of any context sensitive algorithms
if (cons.interCallEdges != null) {
// Inter-procedural assignment
for (Iterator<Edge> it = cons.interCallEdges.iterator(); it.hasNext(); ) {
Edge sEdge = it.next();
CgEdge q = ptAnalyzer.getInternalEdgeFromSootEdge(sEdge);
if (q.is_obsoleted == true) {
continue;
}
// Parameter passing
if (nf2 == q.t) {
if (nf1 == Constants.SUPER_MAIN) {
my_lhs.add_simple_constraint_3(my_rhs, 0, q.map_offset, ptAnalyzer.max_context_size_block[q.s]);
} else {
// We should treat the self recursive calls specially
if (q.s == q.t) {
my_lhs.add_simple_constraint_3(my_rhs, 1, 1, ptAnalyzer.context_size[nf1]);
} else {
for (k = 0; k < ptAnalyzer.block_num[nf1]; ++k) {
my_lhs.add_simple_constraint_3(my_rhs, k * ptAnalyzer.max_context_size_block[nf1] + 1, q.map_offset, ptAnalyzer.max_context_size_block[nf1]);
}
}
}
} else {
if (q.s == q.t) {
my_lhs.add_simple_constraint_3(my_rhs, 1, 1, ptAnalyzer.context_size[nf2]);
} else {
for (k = 0; k < ptAnalyzer.block_num[nf2]; ++k) {
my_lhs.add_simple_constraint_3(my_rhs, q.map_offset, k * ptAnalyzer.max_context_size_block[nf2] + 1, ptAnalyzer.max_context_size_block[nf2]);
}
}
}
}
} else {
// Intraprocedural
// And, assignment involves global variable goes here. By
// definition, global variables belong to SUPER_MAIN.
// By the Jimple IR, not both sides are global variables
my_lhs.add_simple_constraint_3(my_rhs, nf1 == Constants.SUPER_MAIN ? 0 : 1, nf2 == Constants.SUPER_MAIN ? 0 : 1, nf1 == Constants.SUPER_MAIN ? ptAnalyzer.context_size[nf2] : ptAnalyzer.context_size[nf1]);
}
break;
case Constants.LOAD_CONS:
// lhs is always a local
// rhs = lhs.f
cons.code = full_convertor[code];
cons.otherSide = my_rhs;
my_lhs.put_complex_constraint(cons);
break;
case Constants.STORE_CONS:
// rhs is always a local
// rhs.f = lhs
cons.code = full_convertor[code];
cons.otherSide = my_lhs;
my_rhs.put_complex_constraint(cons);
break;
default:
throw new RuntimeException("Invalid node type");
}
++n_legal_cons;
}
ptAnalyzer.ps.printf("Only %d (%.1f%%) constraints are needed for this run.\n", n_legal_cons, ((double) n_legal_cons / ptAnalyzer.n_init_constraints) * 100);
}
use of soot.jimple.spark.geom.dataRep.PlainConstraint in project soot by Sable.
the class FullSensitiveNodeGenerator method initFlowGraph.
@Override
public void initFlowGraph(GeomPointsTo ptAnalyzer) {
int k;
int n_legal_cons;
int nf1, nf2;
int code;
IVarAbstraction my_lhs, my_rhs;
// Visit all the simple constraints
n_legal_cons = 0;
for (PlainConstraint cons : ptAnalyzer.constraints) {
if (!cons.isActive)
continue;
my_lhs = cons.getLHS().getRepresentative();
my_rhs = cons.getRHS().getRepresentative();
nf1 = ptAnalyzer.getMethodIDFromPtr(my_lhs);
nf2 = ptAnalyzer.getMethodIDFromPtr(my_rhs);
// Test how many globals are in this constraint
code = ((nf1 == Constants.SUPER_MAIN ? 1 : 0) << 1) | (nf2 == Constants.SUPER_MAIN ? 1 : 0);
switch(cons.type) {
case Constants.NEW_CONS:
if (code == 0) {
// the allocation result is assigned to a local variable
my_rhs.add_points_to_3((AllocNode) my_lhs.getWrappedNode(), 1, 1, ptAnalyzer.context_size[nf1]);
} else {
// Assigned to a global or the object itself is a global
my_rhs.add_points_to_4((AllocNode) my_lhs.getWrappedNode(), 1, 1, ptAnalyzer.context_size[nf2], ptAnalyzer.context_size[nf1]);
}
// Enqueue to the worklist
ptAnalyzer.getWorklist().push(my_rhs);
break;
case Constants.ASSIGN_CONS:
if (cons.interCallEdges != null) {
// Inter-procedural assignment (parameter passing, function return)
for (Iterator<Edge> it = cons.interCallEdges.iterator(); it.hasNext(); ) {
Edge sEdge = it.next();
CgEdge q = ptAnalyzer.getInternalEdgeFromSootEdge(sEdge);
if (q.is_obsoleted == true) {
continue;
}
// Parameter passing or not
if (nf2 == q.t) {
// In that case, nf1 is SUPER_MAIN.
if (nf1 == Constants.SUPER_MAIN) {
my_lhs.add_simple_constraint_4(my_rhs, 1, q.map_offset, 1, ptAnalyzer.max_context_size_block[q.s]);
} else {
// We should treat the self recursive calls specially
if (q.s == q.t) {
my_lhs.add_simple_constraint_3(my_rhs, 1, 1, ptAnalyzer.context_size[nf1]);
} else {
for (k = 0; k < ptAnalyzer.block_num[nf1]; ++k) {
my_lhs.add_simple_constraint_3(my_rhs, k * ptAnalyzer.max_context_size_block[nf1] + 1, q.map_offset, ptAnalyzer.max_context_size_block[nf1]);
}
}
}
} else {
if (q.s == q.t) {
// Self-recursive calls may fall here, we handle them properly
my_lhs.add_simple_constraint_3(my_rhs, 1, 1, ptAnalyzer.context_size[nf2]);
} else {
for (k = 0; k < ptAnalyzer.block_num[nf2]; ++k) {
my_lhs.add_simple_constraint_3(my_rhs, q.map_offset, k * ptAnalyzer.max_context_size_block[nf2] + 1, ptAnalyzer.max_context_size_block[nf2]);
}
}
}
}
} else {
if (code == 0) {
// local to local assignment
my_lhs.add_simple_constraint_3(my_rhs, 1, 1, ptAnalyzer.context_size[nf1]);
} else {
my_lhs.add_simple_constraint_4(my_rhs, 1, 1, ptAnalyzer.context_size[nf1], ptAnalyzer.context_size[nf2]);
}
}
break;
case Constants.LOAD_CONS:
// lhs is always a local
// rhs = lhs.f
cons.code = full_convertor[code];
cons.otherSide = my_rhs;
my_lhs.put_complex_constraint(cons);
break;
case Constants.STORE_CONS:
// rhs is always a local
// rhs.f = lhs
cons.code = full_convertor[code];
cons.otherSide = my_lhs;
my_rhs.put_complex_constraint(cons);
break;
default:
throw new RuntimeException("Invalid type");
}
++n_legal_cons;
}
ptAnalyzer.ps.printf("Only %d (%.1f%%) constraints are needed for this run.\n", n_legal_cons, ((double) n_legal_cons / ptAnalyzer.n_init_constraints) * 100);
}
Aggregations