use of ubic.gemma.model.genome.gene.GeneProduct in project Gemma by PavlidisLab.
the class StringBiomartGene2GeneProteinLoaderTest method makeGene.
private Gene makeGene(Taxon t, String name, String ncbiId) {
Gene g = Gene.Factory.newInstance();
g.setName(name);
g.setOfficialName(name);
g.setOfficialSymbol(name);
g.setNcbiGeneId(Integer.parseInt(ncbiId));
g.setTaxon(t);
Collection<GeneProduct> ggg = new HashSet<>();
ggg.add(PersistentDummyObjectHelper.getTestNonPersistentGeneProduct(g));
g.getProducts().addAll(ggg);
g = (Gene) persisterHelper.persist(g);
return g;
}
use of ubic.gemma.model.genome.gene.GeneProduct in project Gemma by PavlidisLab.
the class NcbiGeneConverter method convert.
public Gene convert(NcbiGeneData data) {
// get gene info and fill in gene
NCBIGeneInfo geneInfo = data.getGeneInfo();
Gene gene = this.convert(geneInfo);
// grab all accessions and fill in GeneProduct/DatabaseEntry
// and associate with Gene
Collection<NCBIGene2Accession> gene2accession = data.getAccessions();
Collection<GeneProduct> geneProducts = new HashSet<>();
for (NCBIGene2Accession acc : gene2accession) {
geneProducts.addAll(this.convert(acc, gene));
}
gene.setProducts(geneProducts);
return gene;
}
use of ubic.gemma.model.genome.gene.GeneProduct in project Gemma by PavlidisLab.
the class GenomePersister method updateGene.
/**
* Update a gene.
*
* @param newGeneInfo the non-persistent gene we are copying information from
*/
// Possible external use
@SuppressWarnings({ "unused", "WeakerAccess" })
public Gene updateGene(Gene existingGene, Gene newGeneInfo) {
// NCBI id can be null if gene has been loaded from a gene info file.
Integer existingNcbiId = existingGene.getNcbiGeneId();
if (existingNcbiId != null && !existingNcbiId.equals(newGeneInfo.getNcbiGeneId())) {
AbstractPersister.log.info("NCBI ID Change for " + existingGene + ", new id =" + newGeneInfo.getNcbiGeneId());
String previousIdString = newGeneInfo.getPreviousNcbiId();
if (StringUtils.isNotBlank(previousIdString)) {
/*
* Unfortunately, we need to check multiple 'previous' genes. The example I have run across is MTUS2-AS1
* (human) which was created by merging two previous genes, LOC728437 and LOC731614; only the former was
* in Gemma with its gene product GI:22268051. It also has a product we don't have, GI:14676690. This
* comma-delimited set thing is a hack.
*/
String[] previousIds = StringUtils.split(previousIdString, ",");
boolean found = false;
for (String previousId : previousIds) {
if (previousId.equals(existingGene.getNcbiGeneId().toString())) {
found = true;
}
}
if (!found) {
throw new IllegalStateException("The NCBI ID for " + newGeneInfo + " has changed and the previous NCBI id on record with NCBI (" + newGeneInfo.getPreviousNcbiId() + ") doesn't match.");
}
}
// swap
existingGene.setPreviousNcbiId(existingGene.getNcbiGeneId().toString());
existingGene.setNcbiGeneId(newGeneInfo.getNcbiGeneId());
/*
* Note: On occasion, we have two genes with the same symbol but different NCBI ids. This happens when NCBI
* screws up somehow (?) and has two records for the same gene with different IDs, and we end up with them
* both at the time they were considered separate genes. At some later date NCBI decides to (in effect)
* merge them, so one of the genes has to be deprecated. Such 'relics' are deleted by the DAO, because it
* results in more than one gene being found.
*/
}
/*
* We might want to change this behaviour to clear the value if the updated one has none. For now I just want to
* avoid wiping data.
*/
if (StringUtils.isNotBlank(newGeneInfo.getEnsemblId())) {
existingGene.setEnsemblId(newGeneInfo.getEnsemblId());
}
// We assume the taxon hasn't changed.
Map<String, DatabaseEntry> updatedacMap = new HashMap<>();
for (DatabaseEntry de : existingGene.getAccessions()) {
updatedacMap.put(de.getAccession(), de);
}
for (DatabaseEntry de : newGeneInfo.getAccessions()) {
if (!updatedacMap.containsKey(de.getAccession())) {
this.fillInDatabaseEntry(de);
existingGene.getAccessions().add(de);
}
}
existingGene.setName(newGeneInfo.getName());
existingGene.setDescription(newGeneInfo.getDescription());
existingGene.setOfficialName(newGeneInfo.getOfficialName());
existingGene.setOfficialSymbol(newGeneInfo.getOfficialSymbol());
existingGene.setPhysicalLocation(newGeneInfo.getPhysicalLocation());
this.fillChromosomeLocationAssociations(existingGene.getPhysicalLocation(), existingGene.getTaxon());
existingGene.getAliases().clear();
existingGene.getAliases().addAll(newGeneInfo.getAliases());
/*
* This is the only tricky part - the gene products. We update them if they are already there, and add them if
* not. We do not normally remove 'old' ones that the new gene instance does not have, because they might be
* from different sources. For example, Ensembl or GoldenPath. -- UNLESS the product has an NCBI GI because we
* know those come from NCBI.
*/
Map<String, GeneProduct> updatedGpMap = new HashMap<>();
for (GeneProduct existingGp : existingGene.getProducts()) {
updatedGpMap.put(existingGp.getName(), existingGp);
updatedGpMap.put(existingGp.getNcbiGi(), existingGp);
}
Map<String, GeneProduct> usedGIs = new HashMap<>();
for (GeneProduct newGeneProductInfo : newGeneInfo.getProducts()) {
if (updatedGpMap.containsKey(newGeneProductInfo.getName())) {
AbstractPersister.log.debug("Updating gene product based on name: " + newGeneProductInfo);
GeneProduct existingGeneProduct = updatedGpMap.get(newGeneProductInfo.getName());
this.updateGeneProduct(existingGeneProduct, newGeneProductInfo);
} else if (updatedGpMap.containsKey(newGeneProductInfo.getNcbiGi())) {
AbstractPersister.log.debug("Updating gene product based on GI: " + newGeneProductInfo);
GeneProduct existingGeneProduct = updatedGpMap.get(newGeneProductInfo.getNcbiGi());
this.updateGeneProduct(existingGeneProduct, newGeneProductInfo);
} else {
GeneProduct existingGeneProduct = geneProductDao.find(newGeneProductInfo);
if (existingGeneProduct == null) {
// it is, in fact, new, so far as we can tell.
newGeneProductInfo.setGene(existingGene);
this.fillInGeneProductAssociations(newGeneProductInfo);
AbstractPersister.log.info("New product for " + existingGene + ": " + newGeneProductInfo);
existingGene.getProducts().add(newGeneProductInfo);
} else {
/*
* This can only happen if this gene product is associated with a different gene. This generally
* happens when a transcript is associated with two genes in NCBI, so the switching is actually not
* useful to us, but we do it anyway to be consistent (and in case it really does matter). It is
* rare. Causes can be 1) bicistronic genes such as human LUZP6 and MTPN; 2) genome-duplicated
* genes; or 3) an error in the data source. The problem for us is at this point in processing, we
* don't know if the gene is going to get 'reattached' to its original gene.
*/
existingGeneProduct = geneProductDao.thaw(existingGeneProduct);
Gene oldGeneForExistingGeneProduct = existingGeneProduct.getGene();
if (oldGeneForExistingGeneProduct != null) {
// transient.
Gene geneInfo = newGeneProductInfo.getGene();
if (!oldGeneForExistingGeneProduct.equals(geneInfo)) {
AbstractPersister.log.warn("Switching gene product from one gene to another: " + existingGeneProduct + " switching to " + geneInfo + " (this can also happen if an mRNA is associated with two genes, which we don't allow, so we switch it arbitrarily)");
// Here we just remove its old association.
oldGeneForExistingGeneProduct = geneDao.thaw(oldGeneForExistingGeneProduct);
oldGeneForExistingGeneProduct.getProducts().remove(existingGeneProduct);
log.info("Switch: Removing " + existingGeneProduct + " from " + oldGeneForExistingGeneProduct + " GI=" + existingGeneProduct.getNcbiGi());
geneDao.update(oldGeneForExistingGeneProduct);
if (oldGeneForExistingGeneProduct.getProducts().isEmpty()) {
AbstractPersister.log.warn("Gene has no products left after removing that gene product (but it might change later): " + oldGeneForExistingGeneProduct);
/*
* On occasion, we run into problems with sequences that have two diffent NCBI GI
* IDs (due to an update) and which is also associated with two genes - almost
* always in Drosophila. A recent example was GenBank: BT099970, which had the GI
* 289666832 but after an update was GI 1108657489 associated with both Lcp65Ab1 and
* Lcp65Ab2 in gene2accession. It's proven hard to track down exactly how to fix this as
* the failure happens at the transaction flush - but using --restart seems to fix it.
*/
}
}
assert !oldGeneForExistingGeneProduct.getProducts().contains(existingGeneProduct);
} else {
AbstractPersister.log.info("Attaching orphaned gene product to " + existingGene + " : " + existingGeneProduct);
}
existingGeneProduct.setGene(existingGene);
existingGene.getProducts().add(existingGeneProduct);
assert existingGeneProduct.getGene().equals(existingGene);
this.updateGeneProduct(existingGeneProduct, newGeneProductInfo);
}
}
if (newGeneProductInfo.getNcbiGi() != null)
usedGIs.put(newGeneProductInfo.getNcbiGi(), newGeneProductInfo);
}
Collection<GeneProduct> toRemove = new HashSet<>();
if (!usedGIs.isEmpty()) {
toRemove = this.handleGeneProductChangedGIs(existingGene, usedGIs);
}
geneDao.update(existingGene);
if (!toRemove.isEmpty()) {
this.removeGeneProducts(toRemove);
}
if (existingGene.getProducts().isEmpty()) {
AbstractPersister.log.debug("No products left for: " + existingGene);
}
return existingGene;
}
use of ubic.gemma.model.genome.gene.GeneProduct in project Gemma by PavlidisLab.
the class Gene method computeHashCode.
private int computeHashCode() {
int hashCode = 29;
if (this.getNcbiGeneId() != null) {
hashCode += this.getNcbiGeneId().hashCode();
return hashCode;
}
if (this.getOfficialSymbol() != null) {
hashCode += this.getOfficialSymbol().hashCode();
}
if (this.getTaxon() != null) {
hashCode += this.getTaxon().hashCode();
}
if (this.getOfficialName() != null) {
hashCode += this.getOfficialName().hashCode();
} else if (this.getPhysicalLocation() != null) {
hashCode += this.getPhysicalLocation().hashCode();
} else if (this.getProducts() != null && this.getProducts().size() > 0) {
GeneProduct gp = this.getProducts().iterator().next();
hashCode += gp.hashCode();
}
hashCode += super.hashCode();
return hashCode;
}
use of ubic.gemma.model.genome.gene.GeneProduct in project Gemma by PavlidisLab.
the class GoldenPathSequenceAnalysis method findClosestGene.
/**
* Given a location, find the nearest gene on the same strand, including only "known", "refseq" or "ensembl"
* transcripts.
*
* @param chromosome chromosome
* @param queryStart start
* @param queryEnd end
* @param strand Either '+' or '-'
* @param maxWindow the number of bases on each side to look, at most, in addition to looking inside the given
* region.
* @return the Gene closest to the given location. This is a transient instance, not from Gemma's database.
*/
public Gene findClosestGene(String chromosome, Long queryStart, Long queryEnd, String strand, int maxWindow) {
if (queryEnd < queryStart)
throw new IllegalArgumentException("End must not be less than start");
long round = 0L;
int numRounds = 5;
int increment = (int) (maxWindow / (double) numRounds);
while (round < numRounds) {
long left = queryStart + round * increment;
long right = queryEnd + round * increment;
Collection<GeneProduct> geneProducts = this.findRefGenesByLocation(chromosome, left, right, strand);
geneProducts.addAll(this.findKnownGenesByLocation(chromosome, left, right, strand));
Gene nearest = null;
int closestSoFar = Integer.MAX_VALUE;
for (GeneProduct geneProduct : geneProducts) {
PhysicalLocation gpl = geneProduct.getPhysicalLocation();
Long start = gpl.getNucleotide();
Long end = start + gpl.getNucleotideLength();
int gap = (int) Math.min(left - end, start - right);
if (gap < closestSoFar) {
closestSoFar = gap;
nearest = geneProduct.getGene();
}
}
if (nearest != null)
return nearest;
round++;
}
return null;
}
Aggregations